• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 8
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Time Splitting Methods Applied To A Nonlinear Advective Equation

Shrivathsa, B 07 1900 (has links)
Time splitting is a numerical procedure used in solution of partial differential equations whose solutions allow multiple time scales. Numerical schemes are split for handling the stiffness in equations, i.e. when there are multiple time scales with a few time scales being smaller than the others. When there are such terms with smaller time scales, due to the Courant number restriction, the computational cost becomes high if these terms are treated explicitly. In the present work a nonlinear advective equation is solved numerically using different techniques based on a generalised framework for splitting methods. The nonlinear advective equation was chosen because it has an analytical solution making comparisons with numerical schemes amenable and also because its nonlinearity mimics the equations encountered in atmospheric modelling. Using the nonlinear advective equation as a test bed, an analysis of the splitting methods and their influence on the split solutions has been made. An understanding of influence of splitting schemes requires knowledge of behaviour of unsplit schemes beforehand. Hence a study on unsplit methods has also been made. In the present work, using the nonlinear advective equation, it shown that the three time level schemes have high phase errors and underestimate energy (even though they have a higher order of accuracy in time). It is also found that the leap-frog method, which is used widely in atmospheric modelling, is the worst among examined unsplit methods. The semi implicit method, again a popular splitting method with atmospheric modellers is the worst among examined split methods. Three time-level schemes also need explicit filtering to remove the computational mode. This filtering can have a significant impact on the obtained numerical solutions, and hence three-time level schemes appear to be unattractive in the context of the nonlinear convective equation. Based on this experience, splitting methods for the two-time level schemes is proposed. These schemes realistically capture the phase and energy of the nonlinear advective equation.
32

Periodická okrajová úloha v modelování kmitů nelineárních oscilátorů / Periodic boundary value problem in mathematical models of nonlinear oscillators

Kyjovský, Adam January 2020 (has links)
This master's thesis deals with qualitative analysis of nonlinear differential equations of second order. For autonomous equations some basic notions of Hamiltonian systems (mainly construction of phase portrait) are presented. For non-autonomous equations the method of lower and upper functions for periodic boundary value problem is used. These notions are then applied to a model of mechanical oscillator, a question of existence of solutions to autonomous and non-autonomous nonlinear differential equations is studied.
33

Contribution à l'étude du phénomène d'oscillation argumentaire / Contribution to the study of the argumental-oscillation phenomenon

Cintra, Daniel 06 December 2017 (has links)
Contribution à l’étude du phénomène d’oscillation argumentaire. L’oscillateur argumentaire a un mouvement stable périodique, à une fréquence proche de sa fréquence fondamentale, lorsqu’il est soumis à une excitation provenant d’une source de type harmonique, à une fréquence qui est un multiple de ladite fréquence fondamentale, et agissant de manière telle que son interaction avec le système dépende des coordonnées d’espace du système. La présente thèse étudie quelques systèmes argumentaires et essaie de mettre en évidence des relations symboliques entre les paramètres de ces systèmes et leur comportement observé ou calculé. C’est la représentation de Van der Pol qui a été utilisée la plupart du temps pour représenter l’état du système, car elle est bien adaptée à la méthode de centrage, où l'on cherche une solution sous forme d’un signal de type sinusoïdal, d’amplitude et de phase lentement variables. L’originalité de la présente thèse vis-à-vis des publications antérieures est dans la modélisation, plus proche des systèmes physiques réels, dans les développements symboliques qui donnent des représentations inédites, dans le mode de réalisation des expériences, qui utilisent toutes une visualisation de Van der Pol en temps réel, et dans l’objet de l’expérience de la poutre excitée axialement de manière argumentaire. Au cours de cette thèse, des systèmes simples à un DDL ont été modélisés, construits et expérimentés. Des relations symboliques, notamment concernant les probabilités de capture par des attracteurs, ainsi que des critères de stabilité et une solution symbolique approchée, ont été mis en évidence. Un système continu constitué d’une poutre élancée excitée axialement a ensuite été modélisé à l’aide de deux modèles et expérimenté ; toujours dans le domaine symbolique, des propriétés ont été étudiées, notamment concernant des combinaisons de plages de paramètres permettant au phénomène argumentaire d’exister / Contribution to the study of the argumental oscillation phenomenon. The argumental oscillator has a stable periodic motion at a frequency close to its fundamental frequency when it is subjected to an excitation from a harmonic source at a frequency which is a multiple of said fundamental frequency, and acting in such a way that its interaction with the system depends on the space coordinates of the system. This thesis studies some argumental systems and tries to demonstrate symbolic relations between the parameters of these systems and their observed or calculated behavior. The Van der Pol representation was used most of the time to represent the state of the system, as it is well adapted to the averaging method, where a solution is sought as a signal of sinusoidal type, with slowly varying amplitude and phase. The originality of this thesis with respect to previous publications is in the modeling, closer to real physical systems, in the symbolic developments that give new representations, in the embodiment of the experiments, which all use a real-time Van der Pol visualization, and in the object of the experiment of the beam axially excited in an argumental way. During this thesis, simple systems with one DDL have been modeled, built and tested. Symbolic relationships have been highlighted, in particular with regard to the probabilities of capture by attractors, as well as stability criteria and an approximate symbolic solution. A continuous system consisting of an axially excited slender beam was then modeled using two models, and tested; still in the symbolic domain, properties have been studied, especially concerning combinations of parameter ranges allowing the argumental phenomenon to occur
34

Vibration Signal Features for the Quantification of Prosthetic Loosening in Total Hip Arthroplasties

Stevenson, Nathan January 2003 (has links)
This project attempts to quantify the integrity of the fixation of total hip arthro- T plasties (THAs) by observing vibration signal features. The aim of this thesis is, therefore, to find the signal differences between firm and loose prosthesis. These difference will be expressed in different transformed domains with the expectation that a certain domain will provide superior results. Once the signal differences have been determined they will be examined for their ability to quantify the looseness. Initially, a new definition of progressive, femoral component loosening was created, based on the application of mechanical fit, involving four general conditions. In order of increasing looseness the conditions (with their equivalent engineering associations) are listed as, firm (adherence), firm (interference), micro-loose (transition) and macro-loose (clearance). These conditions were then used to aid in the development and evaluation of a simple mathematical model based on an ordinary differential equation. Several possible parameters well suited to quantification such as gap displacement, cement/interface stiffness and apparent mass were the identified from the model. In addition, the development of this model provided a solution to the problem of unifying early and late loosening mentioned in the literature by Li et al. in 1995 and 1996. This unification permitted early (micro loose) and late (macro loose) loosening to be quantified, if necessary, with the same parameter. The quantification problem was posed as a detection problem by utilising a varying amplitude input. A set of detection techniques were developed to detect the quantity of a critical value, in this case a force. The detection techniques include deviation measures of the instantaneous frequency of the impulse response of the system (accuracy of 100%), linearity of the systems response to Gaussian input (total accuracy of 97.9% over all realisations) and observed resonant frequency linearity with respect to displacement magnitude (accuracy of 100%). Note, that as these techniques were developed with the model in mind their simulated performance was, therefore, considerably high. This critical value found by the detector was then fed into the model and a quantified output was calculated. The quantification techniques using the critical value approach include, ramped amplitude input resonant analysis (experimental accuracy of 94%) and ramped amplitude input stochastic analysis (experimental accuracy of 90%). These techniques were based on analysing the response of the system in the time-frequency domain and with respect to its short-time statistical moments to a ramping amplitude input force, respectively. In addition, other mechanically sound forms of analysis, were then applied to the output of the nonlinear model with the aim of quantifying the looseness or the integrity of fixation of the THA. The cement/interface stiffness and apparent mass techniques, inspired by the work of Chung et.al. in 1979, attempt to assess the integrity of fixation of the THA by tracking the mechanical behaviour of the components of the THA, using the frequency and magnitude of the raw transducer data. This technique has been developed fron the theory of Chung etal but with a differing perspective and provides accuracies of 82% in experimentation and 71% in simulation for the apparent mass and interface stiffness techniques, respectively. Theses techniques do not quantify all forms of clinical loosening, as clinical loosening can exist in many different forms, but they do quantify mechanical loosening or the mechanical functionality of the femoral component through related parameters that observe reduction in mechanical mass, stiffness and the amount of rattle generated by a select ghap betweent he bone/cement or prosthesis/cement interface. This form of mechanical loosening in currently extremely difficult to detect using radiographs. It is envisaged that a vibration test be used in conjunction with radiographs to provide a more complete picture of the integrity of fixation of the THA.
35

Regularity And Propagation Phenomena In Some Linear And Non-Linear Partial Differential Equations With Particular Reference To Microlocal Analysis

Jain, Rahul 03 1900 (has links) (PDF)
No description available.
36

A partial differential equation to model the Tacoma Narrows Bridge failure

Swatzel, James Paul 01 January 2004 (has links)
The purpose of this thesis was to examine a partial differential equation to model the Tacoma Narrows bridge failure. This thesis will examine the equation developed by Lazer and McKenna to model a suspension bridge in no wind.
37

Matematické modelování pomocí diferenciálních rovnic / Mathematical modelling with differential equations

Béreš, Lukáš January 2017 (has links)
Diplomová práce je zaměřena na problematiku nelineárních diferenciálních rovnic. Obsahuje věty důležité k určení chování nelineárního systému pouze za pomoci zlinearizovaného systému, což je následně ukázáno na rovnici matematického kyvadla. Dále se práce zabývá problematikou diferenciálních rovnic se zpoždéním. Pomocí těchto rovnic je možné přesněji popsat některé reálné systémy, především systémy, ve kterých se vyskytují časové prodlevy. Zpoždění ale komplikuje řešitelnost těchto rovnic, což je ukázáno na zjednodušené rovnici portálového jeřábu. Následně je zkoumána oscilace lineární rovnice s nekonstantním zpožděním a nalezení podmínek pro koeficienty rovnice zaručující oscilačnost každého řešení.

Page generated in 0.177 seconds