Spelling suggestions: "subject:"nonlinear mixedeffects 3dmodeling"" "subject:"nonlinear mixedeffects bymodeling""
1 |
Applying Nonlinear Mixed-Effects Modeling to Model Patient Flow in the Emergency Department : Evaluation of the Impact of Patient Characteristics on Emergency Department Logistics / Tillämpning av Icke-Linjär Blandad Effektmodellering för att Modellera Patientflödet vid en Akutmottagning : Utvärdering av Effekten av Patientegenskaper på Logistiken på en AkutmottagningRosamilia, Umberto January 2022 (has links)
Emergency departments are fundamental for providing high-quality care, and their operations directly impact the logistics of the hospitals in their entirety. Poor emergency department performance leads to delays, prolonged hospitalization, and improper allocation of resources, reducing the quality of the provided care and increasing costs. Describing the variability embedded in real clinical data in a useful way is essential for improving the organization of hospitals in the near future. However, it is a challenging task due to clinical complexity and the lack of an established bridge between logistic systems and the clinical insights of the hospital. Therefore, this work aims to design and implement a simplified process model describing patient flow within an emergency department, which could allow the evaluation of the clinical impact of complex patient characteristics on the system's logistics. To achieve this, a novel nonlinear mixed-effects approach with hospital medical records was applied to design patient flow within the emergency department in the form of a multi-state Markov process. Four independent training data samples were extracted from the main dataset. For each of them, the set of covariates that could lead to the most significant improvement in the values of the employed likelihood indicators was selected. Through statistical tests, analysis of the outputs, and a validation process carried out on a fifth and independent dataset, it was possible to obtain a final model containing the most relevant and significant covariates for describing each of the modeled state transitions and confirming their clinical meaningfulness and relevance. The results achieved in this thesis can lead to future improvement of the healthcare logistics systems by extending the use of nonlinear mixed-effects approaches to the estimation of the covariate impact on emergency department flows. / Akutmottagningar är centrala för att tillhandahålla högkvalitativ vård. Deras verksamhet har en direkt inverkan på sjukhusens logistik i helhet. Undermålig prestation i en akutmottagning leder till förseningar, förlängd sjukhusvistelse för patienter och olämpliga resursfördelningar, som i sin tur försämrar kvaliteten på den erbjudna vården, samt ökar kostnader. Därför är det viktigt att beskriva den variabilitet som är inbäddad i kliniskt data för att kunna förbättra strukturen av sjukhus i den närmaste framtiden. Emellertid är det ett utmanande uppdrag på grund av den kliniska komplexiteten och bristen på en etablerad bro mellan logistiska system och insikter om den kliniska situationen på sjukhuset. Detta examensarbete ämnar därför designa och implementera en förenklad processmodel som beskriver patientflödet inom en akutmottagning, vilket skulle kunna tillåta evaluering av vad för klinisk inverkan patienters komplexa egenskaper har på systemets logistik. För att uppnå detta tillämpades ett nytt icke-linjärt tillvägagångssätt för blandade effekter med patientjournaler, med syfte att designa patientflöde inom akutmottagningen i form av en Markovprocess i flera tillstånd. Fyra oberoende urvalsgrupper med övningsdata extraherades från huvuddatasetet och för var och en av dem valdes den uppsättning kovariat som hade möjlighet att leda till den största förbättringen i de applicerade sannolikhetsindikatorerna. Genom statistiska test, analys av uteffekten och en valideringsprocess utförd på en femte oberoende urvalsgrupp, möjliggjordes framtagandet av en slutgiltig modell innehållande de mest relevanta och signifikanta kovariat för att beskriva var och en av de modellerade tillståndsövergångarna, och bekräfta dess kliniska betydelse och relevans. De resultat som uppnåddes i det här examensarbetet har potential att i framtiden leda till förbättring av sjukvårdens logistiksystem, genom att utvidga användningen av icke-linjära blandade effektmodeller för att uppskatta kovariatinverkan på akutmottagningsflöden.
|
Page generated in 0.0806 seconds