• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 11
  • 9
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing the third-order nonlinear optical properties of porphyrins and molecular wires /

Humphrey, Jonathan Leslie, January 2006 (has links)
Thesis (Ph. D.)--Virginia Commonwealth University, 2006. / Prepared for: Dept. of Chemistry. Bibliography: leaves 95-102. Also available online.
2

Nonlinear optical spectroscopy of silicon-boron and other silicon-adsorbate systems

Lim, Daeyoung. January 2001 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2001. / Vita. Includes bibliographical references. Available also from UMI/Dissertation Abstracts International.
3

External cavity diode lasers and non-linear optical frequency conversion in spectroscopic applications /

Shah, Anjali. January 2006 (has links)
Thesis (Ph.D.) - University of St Andrews, November 2006.
4

Ultrafast Imaging of Energy and Charge Transfer at Nanoscale Interfaces

Daria D Blach (14212742) 09 December 2022 (has links)
<p> The interaction of light with semiconductors provides essential insight into their electronic and photonic properties. Excitons, excited electron-hole pairs, determine the optical response of nanomaterials and act as nanoscale energy carriers, making excitonic materials excellent candidates for optoelectronic, photovoltaic, and quantum devices. Unique phenomena can be brought about by using excitonic materials as building blocks in designing new systems and taking advantage of excitons’ dimensionality. For example, growing quantum dots into highly ordered arrays enhances exciton transport due to the strong dipolar coupling between excitons. Alternatively, forming vertical heterostructures between monolayer transition metal dichalcogenides introduces moiré superlattices, which localize the excitons introducing nonlinear interactions that be exploited for quantum information processing. Understanding these complex excitonic systems requires experimental tools capable of high spatial and temporal resolutions.</p> <p><br></p> <p>This thesis aims to contribute to understanding the complex excitons and charges formed at nanoscale interfaces with ultrafast techniques. In the discussed work, we take advantage of the 100s of fs time resolution and 10s of nm spatial precision to visualize exciton migration and dynamics associated with complex excitonic systems. First, we introduce the optical techniques needed to help us understand the fundamental photophysics of the studied systems (Chapter 2). Next, we provide an example of how we can use these methods to understand exciton coherence in perovskite quantum dot solids exhibiting superradiance (Chapter 3) and enhanced exciton transport (Chapter 4) due to low disorder and strong dipolar coupling. We also characterize and explore the behavior of highly excited excitons, Rydberg states, in transition metal dichalcogenides (Chapter 5). Then, we examine the properties of heterostructures formed between two monolayers of transition metal dichalcogenides exhibiting moiré superlattices and investigate the nonlinear exciton-exciton interactions modulated by the moiré potentials (Chapter 6). We also explore charge carrier behavior at interfaces of two different excitonic materials in molybdenum disulfide-single-wall carbon nanotube heterojunctions containing one- and two-dimensional excitons (Chapter 7). Finally, we visualize and quantify charge carrier migration across an alloyed cadmium sulfide and cadmium selenide lateral heterojunction (Chapter 8). We hope to give the reader a better understanding of these complex systems and open up new possibilities for their efficient use through the results presented in this thesis. </p>
5

Transparent Conducting Oxides for Epsilon-Near-Zero Nanophotonics

Clayton T. Devault (5929637) 17 January 2019 (has links)
Epsilon-near-zero materials are an emerging class of nanophotonic materials which engender electromagnetic field enhancement and small phase variation due to their approximate zero permittivity. These quasi-static fields facilitate a number of unique optical properties such as supercoupling, subwavelength confinement, and enhanced light-matter interactions, which has made epsilon-near-zero media a rapidly expanding field of optical physics. Contemporary methods of realizing a system with zero permittivity rely on microwave cavities/waveguides or complex metal-dielectric metamaterials; however, both techniques require advanced fabrication and their operational wavelength is fixed relative to their geometric and optical parameters. It remains an open and substantial challenge to realize an epsilon-near-zero material at pertinent wavelengths, particularly near- and mid-infrared, with tunable/dynamic properties. The focus of this thesis is the exploration of transparent conducting oxides for the development of epsilon-near-zero nanophotonic phenomena and applications. Transparent conducting oxides have an inherent low permittivity, in addition to simple fabrication and tunable optical properties, making them exceptionally promising. Application of transparent conducting oxide films for highly confined modes, nonlinear/ultrafast optics, and strongly coupled systems are discussed.
6

<b>QUANTUM EFFECTS IN EXCITON TRANSPORT AND INTERACTION IN MOLECULAR AGGREGATES</b>

Sarath Kumar (17544861) 05 December 2023 (has links)
<p dir="ltr">Long-range exciton transport, when coupled with reduced exciton-exciton annihilation (EEA), is pivotal for the enhanced performance of organic photovoltaics and the efficiency of natural light-harvesting systems. This thesis explores strategies to optimize exciton transport and EEA rates in molecular materials by manipulating the quantum nature of excitons, particularly exciton delocalization. In addition, we also aim to understand factors limiting the transport of delocalized excitons within molecular materials. To this end, self-assembled perylene diimide (PDI) molecular aggregates are ideal candidates for this study due to their conducive properties for engineering exciton delocalization. <b>Chapter 1 </b>establishes a fundamental understanding of exciton delocalization, outlining strategies to tune this phenomenon within PDI aggregates and presenting the open questions this thesis addresses. <b>Chapter 2 </b>details the synthesis of PDI aggregates and delineates the spectroscopic techniques used for characterization, including steady-state absorption and emission, transient photoluminescence (PL), and transient absorption spectroscopy. It also describes the microscopy methods implemented to visualize exciton transport, such as transient PL microscopy and transient absorption microscopy (TAM). <b>Chapter 3 </b>introduces the thesis's primary theme: the suppression of exciton-exciton annihilation (EEA) in molecular aggregates through quantum interference. This chapter demonstrates that the spatial phase relationship of delocalized excitons is crucial in EEA, with band bottom excitons in H aggregates exhibiting an oscillating spatial phase relationship displaying a coherent suppression of EEA. <b>Chapter 4 </b>discusses how coupling to static and dynamic disorder affects coherent exciton propagation. High spatial and temporal resolution TAM experiments, along with temperature-dependent studies, help disentangle the contributions of static and dynamic disorder to exciton transport. <b>Chapter 5 </b>delves into the concept of band shape engineering, whereby the microscopic electronic couplings within PDI aggregates are fine-tuned by altering the packing motifs to regulate exciton transport. Through low-temperature TAM experiments, this chapter illustrates how the interplay between long-range Coulombic and short-range charge transfer electronic couplings can determine exciton bandwidth and influence the coherent propagation of excitons. <b>Chapter 6 </b>provides a summary of the work and discusses future directions, paving the way for continued exploration in the field of exciton transport and interaction in molecular aggregates.</p>
7

Ultrafast Dynamics of Excited Molecules probed using Nonlinear Spectroscopy

Siddhant Pandey (18415116) 23 April 2024 (has links)
<p dir="ltr">Some of the simplest molecules that are found in abundance in nature, like oxygen, nitrogen, carbon dioxide and water can be playgrounds for complex quantum mechanical phenomenon. Although we can calculate their static properties, like binding energies, equilibrium geometries and ionization/decay rates with extraordinary precision, their dynamics offer new avenues for exploration. Although analytical techniques have been successfully applied in studying single-particle and many-particle systems, few-particle systems like simple molecules are still best understood through a combination of numerical calculations and experimental work. However, the small size of these molecules endows them with dynamics that occur on timescales of a few picoseconds to a few attoseconds, making their experimental study challenging. The overarching goal of this work is the study of such ‘ultrafast’ dynamics in excited state molecules/atoms, by developing and demonstrating novel optical probes of quantum dynamics.</p><p dir="ltr">One way to probe ultrafast dynamics in molecules is by measuring their nonlinear optical response. Such a measurement can potentially track the evolution of the symmetries of excited molecules, shedding light on their transient dynamics. We start chapter 1 with a brief discussion of the formalism behind nonlinear optical spectroscopy. Direct measurement of ultrafast (and ultraweak) optical pulses is discussed as a useful probe of nonlinear processes. After presenting preliminary results on direct electric field reconstruction, experimental work on measuring emitted nonlinear electric fields from impulsively aligned molecules is discussed. In such an experiment, however, contributions from both aligned and unaligned molecules are present, and new experimental capabilities had to be developed to disentangle and measure the ultraweak signal from aligned molecules. Following a detailed discussion of the developed measurement capabilities, results from experiments done on aligned carbon dioxide and nitrogen molecules are discussed.</p><p dir="ltr">Unlike solids, where electronic states can be excited with visible/UV light, binding energies in isolated atoms/molecules are on the order of electron-volts (eVs), and they need vacuum-ultraviolet (VUV) extreme-ultraviolet (EUV) light to excite electronically. Polyatomic molecules, like ethylene, when excited to an electronic state with VUV light, often relax back to the ground state by redistributing energy to their internal degrees of freedom non-adiabatically. These relaxation pathways are important in many chemical and biological systems, and control the yield of chemical reactions ranging from elementary reactions involving few atoms to large biomolecules such as DNA and proteins. For instance, in the photochemical reaction of the protein Rhodopsin, considered to be the primary event in human vision. In chapter 2 we discuss progress made towards extending nonlinear response measurements to study ultrafast dynamics in electronically excited molecules, using a high-harmonic VUV source. Details about the design of the high-harmonic generation beamline, and preliminary experimental data are presented. In chapter 3 we discuss preliminary theoretical work on the development of an EUV entangled-photon source, using two-photon emission from the metastable 2s state in neutral Helium. Such a source, if demonstrated, can possibly even extended to the zeptosecond regime in the future.</p>
8

MID-INFRARED LASER ABSORPTION SPECTROSCOPY DIAGNOSTICS FOR INTERNAL COMBUSTION ENGINE SYSTEMS

Joshua W Stiborek (18423714) 23 April 2024 (has links)
<p dir="ltr">This work presents the development and application of novel laser absorption spectroscopy sensors that were deployed to make high-rate (1-15 kHz) measurements of temperature, CO, NO, CO<sub>2</sub>, and air-fuel ratio in internal combustion engine (ICE) systems. These sensors provided measurements with unprecedented time resolution in ICE exhaust that allowed for individual cylinder firing events to be detected which will greatly improve understanding of ICE systems and allow for emissions reduction strategies to be tested. </p>
9

External cavity diode lasers and non-linear optical frequency conversion in spectroscopic applications

Shah, Anjali January 2006 (has links)
Semiconductor diode lasers are successful tools in atomic spectroscopy. They are routinely used in frequency conversion applications to develop devices that access regions of the spectrum not directly available. This thesis describes the practical application of novel violet diode laser systems and their possible inclusion in spectroscopic systems. The design, assembly and successful operation of a doubly resonant optical parametric oscillator is described. There is discussion of the spectral behaviour of the device and the potential for pumping with a violet diode laser. Methods to adapt the output from the solitary diode devices are demonstrated with the use of microlensed diode lasers and extended cavity configurations. Details of the current tuning, linewidth and smooth tuning characteristics of a number of the lasers used are given. A commercial violet diode laser is used within an extended cavity to measure the hyperfine structure of atomic indium from a hollow cathode galvatron source at room temperature. Stabilisation of the diode laser to a line from the indium spectrum is attempted. The remainder of the thesis is concerned with the development of techniques to deliver clearer and more precise spectral information about trace species. Microlensed red and violet diode lasers are used to generate light at 254nm via sum frequency generation for the direct detection and modulation spectroscopy of mercury vapour, with microlensed lasers with modulation allowing more accurate discrimination between spectral features than direct absorption measurements. In addition Raman tweezers modulation spectroscopy is undertaken to investigate polymer microspheres and biological cell samples where the use of the modulation technique demonstrated improvements in the acquisition time and clarity of spectra through increased signal to noise and rejection of background fluorescence effects. A comparison between the direct and modulation techniques for all the systems indicates the greater sensitivity of the modulation technique.
10

Manipulating Photocarrier and Exciton Transport in Hybrid and Molecular Semiconductors

Linrui Jin (13162254) 27 July 2022 (has links)
<p> Excitons represent the electronic excited state of organic semiconductor and many low-dimensional inorganic semiconductors. In solar energy conversion systems, exciton transport affects how fast the charges reach the electrodes thus governs the performance of photovoltaic cells. In optoelectronic applications such as semiconductor lasers and light-emitting diodes, exciton radiative rate determines the efficiency of luminescence in competition to various nonradiative processes. Therefore, understanding how exciton migrates over space as well as its decay dynamics are vital for the design of highly efficient optoelectronic devices. To interrogate these photophysical processes requires experimental tools with simultaneous high temporal and spatial resolution. In this thesis, I introduce two transient imaging systems (photoluminescence imaging with 300 ps time resolution, and transient absorption microscopy with 200 fs time) that are innovative tools to directly probe excited state dynamics and transport in sub-μm domains. The techniques were applied to a type of promising semiconductor, perovskites, including surface-passivated hybrid perovskite and 2D layered perovskites to explore the fundamental mechanisms that affect exciton transport. The fundamental understanding of excitons shed light on the underlying physics such as exciton delocalization, exciton-exciton interaction, and how these properties affected by the static and dynamic disorders of the material. We further demonstrated a novel twisted superlattice using ultrathin perovskites that confines excitons due to increased density of state from the moiré flat bands. In addition, excitons can be accelerated by strongly interacts photons, forming polariton quasiparticles that possess small effective mass. This is demonstrated by coupling 2D layered perovskites to a plasmonic array. We further showcase the formation of bulk polaritons without an external optical cavity in a self-assembled organic aggregate. Experimental investigation into these intriguing phenomena provide an approach to study fundamental processes such as many-body interaction and quantum coherence. </p>

Page generated in 0.0818 seconds