• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

NOPCPA ultracourt pompé par CPA fibré haute cadence / Ultrashort NOPCPA pomped by high repetition rate CPA fibered laser

Hazera, Christophe 07 July 2014 (has links)
Ces dernières années, le développement des lasers femtosecondes s’est massivement orienté vers des sources à fortepuissance moyenne pour des applications autant scientifiques - par exemple la génération d’impulsions XUV - qu’industrielles. Cettethèse a consisté à développer une source laser permettant d’amplifier des impulsions ultra-brèves à très haute cadence par un laserà fibre avec d’un côté le développement d’un laser de pompe femtoseconde fibré (<600fs) à haute cadence (100kHz), et de fortepuissance (50W) et de l’autre des amplificateurs paramétriques optiques ultrabrefs (<10fs) pompés par cette même source. Pour cela,au sein d’une architecture à dérive de fréquence de fort étirement (2ns), nous avons exploité les propriétés des fibres photoniques à trèsgros coeur dopé à l’Ytterbium qui, pour approcher des énergies proches de 1mJ, nécessitent d’effectuer des études d’endommagement etde préparation des fibres. Nous avons alors pu démontrer une puissance maximale de 90W mais d’excellents résultats ont été établis dansun régime stable et robuste pour lequel ce laser délivre une puissance de 60W avec des impulsions de durées inférieures à 400fs. Aprèsdoublage en fréquence, ce laser a permis alors d’amplifier en deux étages dans des cristaux de BBO des bandes spectrales supérieuresà 300nm centrées autour de 800 nm avec une énergie par impulsion de 19[mu] J (1.9W). Avec un système d’étirement et de compressionbasé sur la combinaison de lames de silice et de miroirs à dérive de fréquence, ces impulsions ont pu atteindre une durée finale de 9.7fs.Ainsi, ces deux sources permettent d’ouvrir la voie à de vastes champs d’investigation en physique moléculaire et atomique. / In recent years, the development of femtosecond lasers has been heavily oriented towards high average power sources forboth scientific experiments - such as XUV pulses generation - as well as for industrial applications. This work has been devoted to developa laser source able to amplify ultra-short pulses at a very high repetition rate. In one hand, we develop a high average power (50W)pump laser based on a Fiber Chirped Pulse Amplification (FCPA) technology delivering 400 fs pulses at a high repetition rate (100kHz).In the other hand, a multistage ultrafast optical parametric amplifiers (<10fs) pumped by this source has been then implemented. Toachieve this, we took the benefits of the Ytterbium-doped large-core photonics fibre’s properties in order to approach energies closeto 1mJ. Even in a highly stretched chirped pulse architecture (2ns), using this kind of technology, required to perform studies overdamage and preparation processes of fibers. Thereby, we demonstrated a maximum output power of 90W, but excellent results havebeen obtained in a stable and robust regime in which this laser delivers 60W with pulse durations shorter than 400fs. After frequencydoubling, this laser was sent as a pump into a two-stages - non collinear parametric amplifier made with BBO crystals and a spectrumdelivered a by a CEP-Stable-6fs Ti :sa oscillator has been amplified around 800nm over a spectral bandwidth larger than 300nm witha pulse energy of 19[mu] J (1.9W). By using a stretching and compression scheme based on the combination of silica wedges and chirpedmirrors, the final pulses have been then recompressed down to 9.7fs. These laser systems can be now used to pave the way for vast fieldsof investigation in molecular and atomic physics.
2

Source laser à fibre dopée Yb de haute énergie délivrant des impulsions de quelques cycles optiques / Few-cycles high energy fYb-doped fiber amplifier system

Lavenu, Loïc 25 March 2019 (has links)
Les lasers femtoseconde à fibre dopée Yb sont aujourd'hui largement utilisés dans le domaine industriel parce que leur puissance moyenne est élevée. Cela permet d'accélérer les processus de fabrication. Cependant, les lasers à cristaux dopés Ti-Sa dominent dans les applications scientifiques parce que la durée d'impulsion est souvent le critère principal. Ces derniers produisent des impulsions d'une durée inférieure à 30 fs alors que les lasers à fibre dopée Yb, limités par la bande de gain du milieu amplificateur, ne génèrent que des durées de 300 fs.Cette thèse a permis de démontrer la génération, en sortie d'amplificateur à fibre dopée ytterbium, d'impulsion à haute énergie de quelques cycles optiques. Pour ce faire, la durée des impulsions est d'abord réduite en sortie d'amplificateur grâce à l'optimisation de l'architecture laser par façonnage spectral avant amplificateur de puissance afin de limiter l'impact du rétrécissement spectral par le gain. Cette technique permet de générer des impulsions de 130 fs.Afin d'obtenir des durées encore plus courte, une seconde technique de réduction de la durée des impulsions est utilisée après le laser utilisant l'auto-modulation de phase. Le milieu non-linéaire le plus courant utilisé pour des lasers de haute énergie est le capillaire rempli de gaz. L'utilisation de ce milieu nous permet de générer des durées d'impulsions de 15 fs mais est limité par son encombrement et sa transmission.Un deuxième schéma de compression non-linéaire est étudié afin de dépasser cette limitation : la Cellule Multi-Passage. L'utilisation de ce type d'architecture permet effectivement d'atteindre des transmission très élevées mais la contrainte sur le traitement des miroirs de la cellule limite le facteur de compression.Pour générer des durée d'impulsions de quelques cycles optiques, nous avons donc proposé de combiner les deux architectures étudiées en utilisant les avantages de chacune, permettant ainsi générer des impulsions de 2 cycles optiques (6.8 fs). Cette architecture globale permet la création de sources d'impulsions de haute énergie et de très courtes durées compactes et efficaces. / Femtosecond Yb–doped fiber lasers are commonly used in industry because of their high average power. This permits to increase the speed of fabrication processes. However, in scientific applications, the vast majority of high-intensity physics experiments are nowadays driven using Ti:Sapphire lasers. The key point in these applications is often the pulse duration and Ti:Sapphire lasers typically generate 30 fs pulses whereas Yb-doped fiber lasers generate only 300 fs pulses because of gain narrowing.In this thesis, we have sought to generate few-cycle pulses (< 10fs) from Yb-doped fiber lasers. First, we optimize the laser architecture by using spectral amplitude shaping in order to counterbalance gain narrowing. This allows to generate 130 fs pulse duration.To obtain even shorter pulses we added a nonlinear compression set-up after the laser, based on self-phase modulation. For high energy, the most commonly used nonlinear medium is gas-filled capillaries. This set-up allows us to generate 15 fs pulse duration. Nevertheless the transmission of the set-up is limited to 50 %.A second scheme is studied which overcomes this limitation: the gas-filled Multi-Pass Cell. We experimentally demonstrate for the first time nonlinear compression of a high-energy Yb-doped fiber source in this novel implementation. The use of this architecture permits to reach high transmission but the compression factor at the output of the set-up is limited by the mirror coatings.To produce few-cycles pulse duration, we combine the two aforementionned schemes, allowing the generation of two-cycle (6.8 fs) pulse duration with a high overall transmission. This global architecture will enable a new generation of high-energy compact few-cycle laser sources.

Page generated in 0.0832 seconds