Spelling suggestions: "subject:"nonlinearity dispersion"" "subject:"nonlinearityχ dispersion""
1 |
Mathematical modelling of nonlinear ring waves in a stratified fluidZhang, Xizheng January 2015 (has links)
Oceanic waves registered by satellite observations often have curvilinear fronts and propagate over various currents. In this thesis, we study long linear and weakly-nonlinear ring waves in a stratified fluid in the presence of a depth-dependent horizontal shear flow. It is shown that despite the clashing geometries of the waves and the shear flow, there exists a linear modal decomposition, which can be used to describe distortion of the wavefronts of surface and internal waves, and systematically derive a 2+1-dimensional cylindrical Korteweg-de Vries (cKdV)-type equation for the amplitudes of the waves. The general theory is applied to the case of the waves in a two-layer fluid with a piecewise-constant shear flow, with an emphasis on the effect of the shear flow on the geometry of the wavefronts. The distortion of the wavefronts is described by the singular solution (envelope of the general solution) of the nonlinear first order differential equation, constituting generalisation of the dispersion relation in this curvilinear geometry. There exists a striking difference in the shape of the wavefronts: the wavefront of the surface wave is elongated in the shear flow direction while the wavefront of the interfacial wave is squeezed in this direction. We solve the derived 2+1-dimensional cKdV-type equation numerically using a finite-difference scheme. The effects of nonlinearity and dispersion are studied by considering numerical results for surface and interfacial ring waves generated from a localised source with and without shear flow and the 2D dam break problem. In these examples, the linear and nonlinear surface waves are faster than interfacial waves, the wave height decreases faster at the surface, the shear flow leads to the wave height decreasing slower downstream and faster upstream, and the effect becomes more prominent as the shear flow strengthens.
|
2 |
Caractérisation non linéaire de l'endommagement des matériaux composites par ondes guidées / Nonlinear characterization of damaged composite plates using guided wavesBaccouche, Yousra 30 April 2013 (has links)
La sensibilité des méthodes acoustiques non-linéaires à la présence ainsi qu’à l’évolution des microendommagements a été prouvée dans différents travaux sur une large gamme de matériaux. Parmi les méthodes appliquées figure la résonance non-linéaire dont la sensibilité à l’endommagement est prouvée pour un seul mode de vibration à travers la décroissance de la fréquence de résonance ƒ et celle facteur de qualité Q en fonction de la déformation dynamique. Ainsi, les paramètres non-linéaires hystérétiques (NLH) ƒ et Q ne sont connus que dans une gamme fréquentielle réduite. Le présent travail de thèse propose l’utilisation d’une approche originale permettant de suivre la dispersion des paramètres ƒ et Q à travers la génération d’ondes guidées dans des plaques en composites à matrices polymère et métallique. De plus, l’approche en ondes guidées a également permis de définir un nouveau paramètre NLH V liée au mode de Lamb A0. L’un des résultats originaux de ce travail est que le rapport V/ƒ s’avère constant (~ 2) quelle que soit la fréquence considérée et ce pour les deux types de composites. Ce résultat prometteur montre pour la première fois qu’il est possible de généraliser le comportement NLH dans les structures en plaques moyennant le formalisme de Lamb. Finalement, le travail de thèse s’est également intéressé à la définition d’un nouveau paramètre NLH large bande, noté ∆S, afin de suivre la sensibilité du spectre de vibration à l’endommagement. Les mesures ont montré que ∆S pouvait se distinguer de par une réponse pouvant être nonlinéaire dès les premiers niveaux d’excitation ou à partir d’un niveau seuil. Ce résultat très prometteur montre à quel point il est important d’élargir le domaine fréquentiel pour une détection précoce de l’endommagement et ce même à des niveaux d’excitation où l’on croyait le matériau se comporter de façon linéaire. / Sensitivity of non-linear acoustics techniques to the presence and evolution of micro-damage has been proven on a large scale of materials. In particular, different works showed the use of the nonlinear resonance as a reliable method to characterise damage in heterogeneous materials through the drop of the resonance frequency ƒ and the quality factor Q as a function of the dynamic strain. Therefore, nonlinear hysteretic parameters (NLH) ƒ and Q have only been determined in a narrow frequency band. The present work develops an original approach, which allows to follow the frequency dispersion of ƒ and Q by using guided waves propagating in polymer and metal based composite plates. Furthermore, the guided wave approach made possible the definition of a new NLH parameter V through the A0 Lamb mode. One of the original results is that the ratio V/ƒ remains constant for both materials (~2) despite the considered frequency. This encouraging result allows for the first time to show that it is possible to generalise the NLH behaviour in the case of a plate-like structures using the Lamb formalism. Finally, this present PhD thesis defines a new large frequency band NLH parameter ∆S in order to follow the sensitivity of the vibration spectrum to the present damage. The performed experiments have shown that ∆S can be nonlinear either at the very first excitation levels or at a given threshold. This encouraging experimental result shows that there is a real interest in broadening the frequency domain in order to better understand the changes that occur in heterogeneous materials when the dynamic strain is increased.
|
Page generated in 0.1105 seconds