Spelling suggestions: "subject:"nonsensemediated mRNA decay"" "subject:"nonsensemediated mRNA ecay""
11 |
Yeast Upf1 Associates With RibosomesTranslating mRNA Coding Sequences Upstream of Normal Termination Codons: A DissertationMin, Ei Ei 15 April 2015 (has links)
Nonsense-mediated mRNA decay (NMD) specifically targets mRNAs with premature translation termination codons for rapid degradation. NMD is a highly conserved translation-dependent mRNA decay pathway, and its core Upf factors are thought to be recruited to prematurely terminating mRNP complexes, possibly through the release factors that orchestrate translation termination. Upf1 is the central regulator of NMD and recent studies have challenged the notion that this protein is specifically targeted to aberrant, nonsense-containing mRNAs. Rather, it has been proposed that Upf1 binds to most mRNAs in a translation-independent manner. In this thesis, I investigated the nature of Upf1 association with its substrates in the yeast Saccharomyces cerevisiae. Using biochemical and genetic approaches, the basis for Upf1 interaction with ribosomes was evaluated to determine the specificity of Upf1 association with ribosomes, and the extent to which such binding is dependent on prior association of Upf1’s interacting partners. I discovered that Upf1 is specifically associated with Rps26 of the 40S ribosomal subunit, and that this association requires the N-terminal Upf1 CH domain. In addition, using selective ribosome profiling, I investigated when during translation Upf1 associates with ribosomes and showed that Upf1 binding was not limited to polyribosomes that were engaged in translating NMD substrate mRNAs. Rather, Upf1 associated with translating ribosomes on most mRNAs, binding preferentially as ribosomes approached the 3’ ends of open reading frames. Collectively, these studies provide new mechanistic insights into NMD and the dynamics of Upf1 during translation.
|
12 |
Nuclear translationBaboo, Sabyasachi January 2012 (has links)
In bacteria, protein synthesis can occur tightly coupled to transcription. In eukaryotes, it is believed that translation occurs solely in the cytoplasm; I test whether some occurs in nuclei and find: (1) L-azidohomoalanine (Aha) – a methionine analogue (detected by microscopy after attaching a fluorescent tag using ‘click’ chemistry) – is incorporated within 5 s into nuclei in a process sensitive to the translation inhibitor, anisomycin. (2) Puromycin – another inhibitor that end-labels nascent peptides (detected by immuno-fluorescence) – is similarly incorporated in a manner sensitive to a transcriptional inhibitor. (3) CD2 – a non-nuclear protein – is found in nuclei close to the nascent RNA that encodes it (detected by combining indirect immuno-labelling with RNA fluorescence in situ hybridization using intronic probes); faulty (nascent) RNA is destroyed by a quality-control mechanism sensitive to translational inhibitors. I conclude that substantial translation occurs in the nucleus, with some being closely coupled to transcription and the associated proof-reading. Moreover, most peptides made in both the nucleus and cytoplasm are degraded soon after they are made with half-lives of about one minute. I also collaborated on two additional projects: the purification of mega-complexes (transcription ‘factories’) containing RNA polymerases I, II, or III (I used immuno-fluorescence to confirm that each contained the expected constituents), and the demonstration that some ‘factories’ specialize in transcribing genes responding to tumour necrosis factor α – a cytokine that signals through NFκB (I used RNA fluorescence in situ hybridization coupled with immuno-labelling to show active NFκB is found in factories transcribing responsive genes).
|
Page generated in 0.0564 seconds