• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 12
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An exploratory analysis of the relationships between cotton fiber properties and needlepunched nonwoven characteristics

Padmaraj, Lakshmi 06 October 2011 (has links)
Nonwovens represent one of the booming sectors in the textile industry today with a significant projected growth both domestically and globally. At present, cotton is supplanted by synthetic fibers in nonwovens, thereby limiting its utilization in an important market sector. One of the major challenges for cotton is the high variability and lack of uniformity associated with fiber properties. Currently, manufacturers do not take this variability into account while selecting cotton for nonwovens. Therefore, it is essential to understand the effect of fiber properties on the nonwoven fabric characteristics in order to address this problem of variability. Bridging this knowledge gap can help increase cotton’s market share in the nonwoven sector and maintain its competitiveness in the fiber market. This project was an exploratory study to investigate the effect of cotton fiber properties on nonwoven fabric properties. Twenty different samples of Upland cotton with various combinations of fiber length and maturity parameters were used for this research. The fabric mechanical properties – tensile and burst strength, pore structure characteristics and permeability were measured and investigated in this study. The relationships between various raw fiber properties and the measured fabric characteristics were analyzed. The breaking strength of the fabric showed significant relations with fiber length and maturity. Using multiple regression analysis, an equation was derived to predict the specific breaking strength of the fabric from the mean fiber length and maturity ratio values of its constituent fibers. Though bursting strength and permeability showed significant single relations with several fiber properties, the multiple regression analysis returned a single significant predictor in each case – fiber length and fabric density respectively. Results observed from this study show that the constituent fiber attributes have significant relationships with the nonwoven fabric characteristics. Taking these fiber properties into account during raw material selection for cotton nonwovens would be advantageous as manufacturers can optimize quality, and also predict final product characteristics. Future studies focusing on the inter-fiber interactions in cotton nonwovens, comparisons between 100% cotton and synthetic blended nonwovens etc. will help gain better understanding, and contribute towards improving cottons marketability and utilization in the nonwoven industry. / text
2

Světová produkce a obchod s netkanými textíliemi / World production and trade in nonwovens

Strnad, Jiří January 2010 (has links)
In the first chapter the diploma work describes the use and production of nonwovens. It proofs the importance and significance of this industry in world economy. In the second chapter there are described barriers of international trade in nonwovens and the need of tariff elimination. Chapter 3 shows consumption, production and foreign trade in nonwovens - globally focused on European Union. In the final chapter the diploma work is focused on the use of nonwovens in the selected sector of hygiene absorbent products.
3

Wet laid fibreglass composites

Siddique Yousfani, Sheraz January 2010 (has links)
This study investigated the manufacturing process of thermo-set fibreglass nonwoven composites. Techniques of manufacturing nonwoven webs from chopped strands were investigated and from the literature review it was found that the wet laid method was appropriate. The process of manufacturing paper hand sheets from pulp was modified to manufacture flat fibreglass nonwoven webs. The effects of dispersion and fibre length on the quality of these webs were investigated. It was found that the quality of these webs improved due to the dispersion.These nonwoven webs were then impregnated with epoxy resin by using the resin infusion method of vacuum bagging to make composite samples. The effects of dispersion, fibre length and multiple layering on the quality and mechanical properties of these composites were studied. It was found that it is necessary to disperse the fibreglass strands in order to manufacture composites of better quality. The quality and strength of these composites also improved due to the increase in the fibre length and multiple layering. Some initial studies were done to manufacture 3D fibreglass nonwoven webs by using the vacuum forming technique and 3D fibreglass nonwoven composites were also made using these webs. Initial investigation of the physical properties of these 3D composites was conducted and it was found that the void content decreased and the density had slightly increased due to the multiple layering process. This topic can be further investigated in the future.
4

Fundamentální analýza akcií / Stock Fundamental Analysis

Marek, Daniel January 2014 (has links)
This thesis deals with the fundamental analysis of the Pegas Nonwovens SA enterprise, on the basis of which it determines the intrinsic value of the shares. The thesis provides readers with theoretical information of the subject, and presents their practical use when analyzing a specific company. The fundamental analysis is divided into three parts: global, sectoral and financial analysis. In conclusion, the calculated intrinsic value of the shares is compared with their market price and investment recommendations are provided.
5

Experimental and mumerical analysis of deformation of low-density thermally bonded nonwovens

Hou, Xiaonan January 2010 (has links)
Nonwoven materials are engineered fabrics, produced by bonding constituent fibres together by mechanical, thermal or chemical means. Such a technology has a great potential to produce material for specific purposes. It is therefore crucial to develop right products with requested properties. This requires a good understanding of the macro and micro behaviours of nonwoven products. In last 40 years, many efforts have been made by researchers to understand the performance of nonwoven materials. One of the main research challenges on the way to this understanding is to link the properties of fibres and the fabric's random fibrous microstructure to the mechanisms of overall material's deformation. The purpose of this research is to study experimentally and numerically the deformation mechanisms of a low-density thermally bonded nonwoven fabric (fibre: Polypropylene; density: 20 gsm). The study started with tensile experiments for the nonwoven material. Specimens with varying dimensions and shapes were tested to investigate the size-dependent deformation mechanisms of the material. Based on obtained results, representative dimensions for the material are determined and used in other experimental and numerical studies. Then standard tensile tests were performed coupled with image analysis. Analysis of the obtained results, allowed the tensile behaviour of the nonwoven material to be determined, the initial study of the effects of material's nonuniform microstructure was also implemented. Based on the experimental results obtained from tensile tests, continuous finite-element models were developed to simulate the material properties of the nonwoven material for its two principle directions: machine direction (MD) and cross direction (CD). Due to the continuous nature of the models, they were only used to establish the mechanical behaviour of the material by treating it as a two-component composite. The effects of bond points, which are a stiffer component within the material, were analysed. Due to the limitations of the continuous FE models, experimental studies were performed focused on the material s microstructure. The latter was detected using an x-ray Micro CT system and an ARAMIS optical strain analysis system. According to the obtained images, the nonwoven fabric is a three-component material. The effects of material's microstructure on stress/strain distributions in the deformed material were studied using advanced image analysis techniques. Based on the experimental results, a new stress calculation method was suggested to substitute the traditional approach, which is not suitable for the analysis of the low density nonwoven material. Then, the fibres orientation distribution and material properties of single fibres were measured due to their significant effects on overall mechanical properties. Finally, discontinuous finite-element models were developed accounting for on the material's three-component structure. The models emphasised the effects of the nonuniform and discontinuous microstructure of the material. Mechanical properties of fibres, the density of fibrous network, the fibres orientation distribution and the arrangement of bond points were used as input parameters for the models, representing features of the material's microstructure. With the use of the developed discontinuous models, the effects of material's microstructure on deformation mechanisms of the low-density nonwoven material were analysed.
6

Contribution a l'étude des matériaux composites renforcés par des fibres végétales aiguilletées / Study of composite materials reinforced by plant fibre/polymer commingled nonwoven

Merotte, Justin 07 July 2017 (has links)
Proposer des solutions permettant de concevoir et de fabriquer des pièces automobiles performantes mais également respectueuses de l’environnement est devenu un enjeu majeur pour les équipementiers automobiles. Ces travaux de thèse s’inscrivent donc dans ce contexte de compréhension et d’amélioration des matériaux composites non-tissés aiguilletées renforcés par des fibres végétales. À partir d’un même matériau de base, il est possible d’obtenir des structures et des propriétés différentes grâce au contrôle du taux de porosités dans le matériau. On peut ainsi conférer au composite de bonne propriétés d’absorption acoustique à des taux de porosités élevés (50%) ou au contrainte privilégier la tenue mécanique du produit en les limitant. La structure du matériau et la liaison fibre/matrice vont évoluer avec la fraction de porosités et en résulteront des comportements mécaniques bien différents. Suivant le taux de porosité, les performances mécaniques seront donc principalement gouvernées par des paramètres différents tels que la liaison interfaciale ou le renfort. Dans un environnement automobile, les conditions climatiques (humidité et température) jouent un rôle prépondérant dans les performances des biocomposites non-tissés. En effet, l’adhérence fibre/matrice est essentiellement liée aux contraintes radiales compressives, qui sont largement influencées par l’état hygrométrique du renfort. Enfin, la valorisation les chutes de fabrication issues de la thermocompression pour modifier la structure du composite non-tissé a permis de développer un produit présentant un gain en rigidité significatif. / Proposing solutions to produce more efficient and environmentally friendly automotive parts has become a major challenge for tier one suppliers. The work described in this thesis is about understanding and improving composite materials made with commingled plant fibre nonwovens. From the same initial nonwoven, it is possible to obtain very distinct material structures by controlling porosity content. One can then give to the material enhanced acoustic properties with high porosity content (50%) or in the contrary show good mechanical properties by limiting porosities. Material structure will evolve with porosity as well as its mechanical behavior. Thus, as function of porosity, interfacial adhesion of fibre mechanical properties will govern composite mechanical properties. Biocomposite automotive parts are exposed to a large range of climatic environments and their mechanical properties can vary significantly. Indeed, radial stresses are drastically influenced by the reinforcement hygroscopic state. Finally, the idea developing an innovative material structure from compression moulding wastes has helped enhancing material rigidity.
7

Business valaution - Pegas Nonwovnes SA / Ocenění společnosti Pegas Nonwovens SA

Mihardja, André January 2007 (has links)
This thesis concerns valuation of Pegas Nonwovens SA. The valuation was carried out using DFC entity method and market comparable approach. The valuation also contains financial analysis of the company, market analysis and projected financial statements and value drivers.
8

Thermoresponsive 3D scaffolds for non-invasive cell culture

Chetty, Avashnee Shamparkesh 11 June 2013 (has links)
Conventionally, adherent cells are cultured in vitro using flat 2D cell culture trays. However the 2D cell culture method is tedious, unreliable and does not replicate the complexity of the 3D dynamic environment of native tissue. Nowadays 3D scaffolds can be used to culture cells. However a number of challenges still exist, including the need for destructive enzymes to release confluent cells. Poly(Nisopropylacrylamide) (PNIPAAm), a temperature responsive polymer, has revolutionised the cell culture fraternity by providing a non-invasive means of harvesting adherent cells, whereby confluent cells can be spontaneously released by simply cooling the cell culture medium and without requiring enzymes. While PNIPAAm monolayer cell culturing is a promising tool for engineering cell sheets, the current technology is largely limited to the use of flat 2D substrates, which lacks structural and organisational cues for cells. The aim of this project was to develop a 3D PNIPAAm scaffold which could be used efficiently for non-invasive 3D culture of adherent cells. This project was divided into three phases: Phase 1 (preliminary phase) involved development and characterisation of cross-linked PNIPAAm hydrogels; Phase 2 involved development and characterisation of PNIPAAm grafted 3D non-woven scaffolds, while Phase 3 focused on showing proof of concept for non-invasive temperature-induced cell culture from the 3D PNIPAAm grafted scaffolds. In Phase 1, PNIPAAm was cross-linked with N,N’-methylene-bis-acrylamide (MBA) using solution free-radical polymerisation to form P(PNIPAAm-co-MBA) hydrogels. A broad cross-link density (i.e. 1.1 - 9.1 Mol% MBA) was investigated, and the effect of using mixed solvents as the co-polymerisation medium. The P(PNIPAAm-co-MBA) gels proved unsuitable as a robust cell culture matrix, due to poor porosity, slow swelling/deswelling and poor mechanical properties. Subsequently, in Phase 2, polypropylene (PP), polyethylene terephthalate (PET), and nylon fibers were processed into highly porous non-woven fabric (NWF) scaffolds using a needle-punching technology. The NWF scaffolds were grafted with PNIPAAm using oxyfluorination-assisted graft polymerisation (OAGP). The OAGP method involved a 2 step process whereby the NWF was first fluorinated (direct fluorination or oxyfluorination) to introduce new functional groups on the fibre surface. The functionalised NWF scaffolds were then graft-polymerised with NIPAAm in an aqueous medium using ammonium persulphate as the initiator. Following oxyfluorination, new functional groups were detected on the surface of the NWF scaffolds, which included C-OH; C=O; CH2-CHF, and CHF-CHF. PP and nylon were both easily modified by oxyfluorination, while PET displayed very little changes to its surface groups. Improved wetting and swelling in water was observed for the oxyfluorinated polymers compared to pure NWF scaffolds. PP NWF showed the highest graft yield followed by nylon and then PET. PNIPAAm graft yield on the PP NWF was ~24 ±6 μg/cm2 on grafted pre-oxyfluorinated NWF when APS was used; which was found to be significantly higher compared to when pre-oxyfluorinated NWF was used without initiator (9 ±6 μg/cm2, p= 1.7x10-7); or when grafting was on pure PP with APS (2 ±0.3 μg/cm2, p = 8.4x10-12). This corresponded to an average PNIPAAm layer thickness of ~220 ±54 nm; 92 ± 60 nm; and 19 ± 3 nm respectively. Scanning electron microscopy (SEM) revealed a rough surface morphology and confinement of the PNIPAAm graft layer to the surface of the fibers when oxyfluorinated NWF scaffolds were used, however when pure NWF scaffolds were used during grafting, homopolymerisation was observed as a loosely bound layer on the NWF surface. The OAGP method did not affect the crystalline phase of bulk PP as was determined by X-ray diffraction (XRD), however, twin-melting thermal peaks were detected from DSC for the oxyfluorinated PP and PP-g-PNIPAAm NWF which possibly indicated crystal defects. Contact angle studies and microcalorimetric DSC showed that the PP-g-PNIPAAm NWF scaffolds exhibited thermoresponsive behaviour. Using the 2,2-Diphenyl-1-1-picrylhydrazyl (DPPH) radical method and electron-spin resonance (ESR), peroxides, as well as trapped long-lived peroxy radicals were identified on the surface of the oxyfluorinated PP NWF, which are believed to be instrumental in initiating graft polymerisation from the NWF. A free radical mechanism which is diffusion controlled was proposed for the OAGP method with initiation via peroxy radicals (RO•), as well as SO4•- and OH• radicals, whereby the latter result from decomposition of APS. In Phase 3 of this study, proof-of-concept is demonstrated for use of the PNIPAAm grafted NWF scaffolds in non-invasive culture of hepatocytes. Studies demonstrated that hepatocyte cells attached onto the 3D PNIPAAm scaffolds and remained viable in culture over long periods. The cells were released spontaneously and non-destructively as 3D multi-cellular constructs by simply cooling the cell culture medium from 37°C to 20°C, without requiring destructive enzymes. The PP-g- PNIPAAm NWF scaffolds performed the best in 3D cell culture. Additionally the CSIR is developing a thermo responsive 3D (T3D) cell culturing device, whereby the 3D thermo responsive NWF scaffolds are used in the bioreactor for cell culture. Temperature-induced cell release was also verified from the 3D Thermo responsive scaffolds in the bioreactor. This technology could lead to significant advances in improving the reliability of the in vitro cell culture model. Please cite as follows: Chetty, AS 2012, Thermoresponsive 3D scaffolds for non-invasive cell culture, PhD thesis, University of Pretoria, Pretoria, viewed yymmdd < http://upetd.up.ac.za/thesis/available/etd-06112013-151344/ > D13/4/713/ag / Thesis (PhD)--University of Pretoria, 2012. / Chemical Engineering / unrestricted
9

Investigation of the binding effect of fungal fiber (grown on apple pomace) in the formation of lyocell nonwoven textiles and their potential applications

Luo, Xue January 2021 (has links)
This project combines nonwoven technology, biological technology and food waste management and seeks for this feasibility to use fungal microfiber (FM) as a binder for lyocell pro-duction and the characterizations for possible applications. Rhizopus delemar was cultivated apple pomace in liquid-state fermentation to obtain mycelia biomass. The biomass was later blended in a kitchen blender for one minute. The blended FM was later mixed with 6 mm lyocell fibre at different FM dry weight percentage and water to make nonwoven webs by wet-laid method. The feasibility of using fungal microfiber as a binder for lyocell nonwovens was confirmed in this study. It is not possible to make nonwoven webs using lyocell short fibre without any binder applied. With 5%_FM, the tensile strength of lyocell nonwoven webs reached 0.0989 MPa. A clear increasing tensile strength was recorded as the increasing of FM weight per-centage and resulted a highest tensile strength at 9.38 MPa when applying 60%_FM. The re-sult of water contact angle proved that the increasing FM could decrease the hydrophobicity of nonwoven samples. Abrasion test showed that FM could improve the abrasion resistance of the lyocell nonwoven samples. Porosity test showed that lyocell nonwoven samples with a higher FM ended up with smaller mean flow pore size diameter (MFP) that nonwoven samples with 65%_FM has an average MFP at 7.26 m m. The SEM images reviled that FM bonded nonwoven webs had a fibrous structure, which is due to binding effect of fungal microfiber on lyocell short fibers. These characterizations have demonstrated the mechanism of using fungal microfiber as a binder for lyocell nonwovens in this project. In this thesis project, FM bonded lyocell nonwoven webs showed a great potential on the application of nonwoven applications such as interior materials or filtration materials.
10

Experimental and numerical analysis of deformation and damage in thermally bonded nonwoven material

Farukh, Farukh January 2013 (has links)
No description available.

Page generated in 0.0471 seconds