• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diskonteringsräntan påverkar graden av miljöpolitiska styrmedel : En studie om koldioxidskattens påverkan på koldioxidutsläppen

Rehnman, Lisa, With, Johanna January 2011 (has links)
No description available.
2

Characterizations in Domination Theory

Plummer, Andrew Robert 04 December 2006 (has links)
Let G = (V,E) be a graph. A set R is a restrained dominating set (total restrained dominating set, resp.) if every vertex in V − R (V) is adjacent to a vertex in R and (every vertex in V −R) to a vertex in V −R. The restrained domination number of G (total restrained domination number of G), denoted by gamma_r(G) (gamma_tr(G)), is the smallest cardinality of a restrained dominating set (total restrained dominating set) of G. If T is a tree of order n, then gamma_r(T) is greater than or equal to (n+2)/3. We show that gamma_tr(T) is greater than or equal to (n+2)/2. Moreover, we show that if n is congruent to 0 mod 4, then gamma_tr(T) is greater than or equal to (n+2)/2 + 1. We then constructively characterize the extremal trees achieving these lower bounds. Finally, if G is a graph of order n greater than or equal to 2, such that both G and G' are not isomorphic to P_3, then gamma_r(G) + gamma_r(G') is greater than or equal to 4 and less than or equal to n +2. We provide a similar result for total restrained domination and characterize the extremal graphs G of order n achieving these bounds.
3

A Nordhaus-Gaddum Type Problem for the Normalized Laplacian Spectrum and Graph Cheeger Constant

Knudson, Adam Widtsoe 21 June 2024 (has links) (PDF)
We will study various quantities related to connectivity of a graph. To this end, we look at Nordhaus-Gaddum type problems, which are problems where the same quantity is studied for a graph $G$ and its complement $G^c$ at the same time. For a graph $G$ on $n$ vertices with normalized Laplacian eigenvalues $0 = \lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G)$ and graph complement $G^c$, we prove that \begin{equation*} \max\{\lambda_2(G),\lambda_2(G^c)\}\geq \frac{2}{n^2}. \end{equation*} We do this by way of lower bounding $\max\{i(G), i(G^c)\}$ and $\max\{h(G), h(G^c)\}$ where $i(G)$ and $h(G)$ denote the isoperimetric number and Cheeger constant of $G$, respectively. We also discuss some related Nordhaus-Gaddum questions.
4

Identifying vertices in graphs and digraphs

Skaggs, Robert Duane 28 February 2007 (has links)
The closed neighbourhood of a vertex in a graph is the vertex together with the set of adjacent vertices. A di®erentiating-dominating set, or identifying code, is a collection of vertices whose intersection with the closed neighbour- hoods of each vertex is distinct and nonempty. A di®erentiating-dominating set in a graph serves to uniquely identify all the vertices in the graph. Chapter 1 begins with the necessary de¯nitions and background results and provides motivation for the following chapters. Chapter 1 includes a summary of the lower identi¯cation parameters, °L and °d. Chapter 2 de- ¯nes co-distinguishable graphs and determines bounds on the number of edges in graphs which are distinguishable and co-distinguishable while Chap- ter 3 describes the maximum number of vertices needed in order to identify vertices in a graph, and includes some Nordhaus-Gaddum type results for the sum and product of the di®erentiating-domination number of a graph and its complement. Chapter 4 explores criticality, in which any minor modi¯cation in the edge or vertex set of a graph causes the di®erentiating-domination number to change. Chapter 5 extends the identi¯cation parameters to allow for orientations of the graphs in question and considers the question of when adding orientation helps reduce the value of the identi¯cation parameter. We conclude with a survey of complexity results in Chapter 6 and a collection of interesting new research directions in Chapter 7. / Mathematical Sciences / PhD (Mathematics)
5

Identifying vertices in graphs and digraphs

Skaggs, Robert Duane 28 February 2007 (has links)
The closed neighbourhood of a vertex in a graph is the vertex together with the set of adjacent vertices. A di®erentiating-dominating set, or identifying code, is a collection of vertices whose intersection with the closed neighbour- hoods of each vertex is distinct and nonempty. A di®erentiating-dominating set in a graph serves to uniquely identify all the vertices in the graph. Chapter 1 begins with the necessary de¯nitions and background results and provides motivation for the following chapters. Chapter 1 includes a summary of the lower identi¯cation parameters, °L and °d. Chapter 2 de- ¯nes co-distinguishable graphs and determines bounds on the number of edges in graphs which are distinguishable and co-distinguishable while Chap- ter 3 describes the maximum number of vertices needed in order to identify vertices in a graph, and includes some Nordhaus-Gaddum type results for the sum and product of the di®erentiating-domination number of a graph and its complement. Chapter 4 explores criticality, in which any minor modi¯cation in the edge or vertex set of a graph causes the di®erentiating-domination number to change. Chapter 5 extends the identi¯cation parameters to allow for orientations of the graphs in question and considers the question of when adding orientation helps reduce the value of the identi¯cation parameter. We conclude with a survey of complexity results in Chapter 6 and a collection of interesting new research directions in Chapter 7. / Mathematical Sciences / PhD (Mathematics)

Page generated in 0.0295 seconds