• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 15
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • 5
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 363
  • 363
  • 145
  • 136
  • 86
  • 49
  • 40
  • 34
  • 33
  • 33
  • 32
  • 31
  • 29
  • 27
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

The diurnal tides on the Northeast continental shelf off North America

Daifuku, Peter Reid January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1981. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 95-96. / by Peter Reid Daifuku. / M.S.
92

Modeling Large Whale Entanglement Injuries: An Experimental Analysis of the Influence of Tissue Compliance, Line Tension, and Draw-Length on Epidermal Abrasion Resistance

Winn, Jeremy Paul January 2006 (has links) (PDF)
No description available.
93

Earthquake source parameters, seismicity, and tectonics of the oceanographer transform fault

Muller, James Louis January 1982 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1982. / Microfiche copy available in Archives and Science / Bibliography: leaves 79-82. / by James Louis Muller. / M.S.
94

The North Atlantic oscillation influence on the wave regime in Portugal an extreme wave event analysis

Semedo, Alvaro A. M. 03 1900 (has links)
Waves in the North Atlantic are strongly seasonal, and peak in the winter season. The west coast of Portugal is exposed to winter swell, generated by wind associated with North Atlantic extratropical cyclones. The track of these storms, generated near the North America east coast, is strongly influenced by the North Atlantic Oscillation (NAO). When the NAO is in its positive phase they normally track northeast and reach Western Europe well north of the Iberian Peninsula, in the British Islands or Scandinavia. However, in the negative NAO situation,the track of the storms is more zonal and south than usual, due to a weakened NAO. The characteristics of wave regime in Portugal are shown to be strongly related to the NAO phase and corresponding storm tracking. Positive NAO storms, tracking northeast towards the north of Europe, drive longer period swell from the northwest, whereas negative NAO storms have associated shorter period swell arriving to Portugal from a more westerly direction. The relation between the NAO phase and the storm tracks and the characteristics of the wave regime is investigated with ten year observations from four directional waverider coastal buoys, located off the coast of Portugal.
95

Deglacial impact of the Scandinavian Ice Sheet on the North Atlantic climate system

Muschitiello, Francesco January 2016 (has links)
The long warming transition from the Last Ice Age into the present Interglacial period, the last deglaciation, holds the key to our understanding of future abrupt climate change. In the last decades, a great effort has been put into deciphering the linkage between freshwater fluxes from melting ice sheets and rapid shifts in global ocean-atmospheric circulation that characterized this puzzling climate period. In particular, the regional expressions of climate change in response to freshwater forcing are still largely unresolved. This projects aims at evaluating the environmental, hydro-climatic and oceanographic response in the Eastern North Atlantic domain to freshwater fluxes from the Scandinavian Ice Sheet during the last deglaciation (~19,000-11,000 years ago). The results presented in this thesis involve an overview of the regional representations of climate change across rapid climatic transitions and provide the groundwork to better understand spatial and temporal propagations of past atmospheric and ocean perturbations. Specifically, this thesis comprises i) a comparison of pollenstratigraphic records from densely 14C dated lake sediment sequences, which provides insight into the regional sensitivity of North European vegetation to freshwater forcing in the Nordic Seas around the onset of the Younger Dryas stadial (~12,900 years ago); ii) a reconstruction of North European hydro-climate, which, together with transient climate simulations, shed light on the mechanisms and regionality of climate shortly prior to the transition into the Younger Dryas stadial; iii) studies of a ~1250-year long glacial varve chronology, which provides an accurate timing for the sudden drainage of proglacial freshwater stored in the former ice-dammed Baltic Ice Lake into the North Atlantic Ocean; iv) a 5000-year long terrestrial-marine reconstruction of Eastern North Atlantic hydro-climate and oceanographic changes that clarifies the hitherto elusive relationship between freshwater forcing and the transient behaviour of the North Atlantic overturning circulation system. The results presented in this thesis provide new important temporal constraints on the events that punctuated the last deglaciation in Northern Europe, and give a clearer understanding of the ocean – atmosphere – ice-sheet feedbacks that were at work in the North Atlantic. This increases our understanding of how the Earth climate system functions in more extreme situations. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: In press. Paper 4: Manuscript.</p>
96

Resolving the timing of major erosion events along the West Greenland-Baffin-Bylot continental margins

Jess, Scott January 2018 (has links)
Continental passive margins exhibit high elevation topography in many localities across the globe. The source and age of much of this topography remains a subject of great debate within the wider community, with numerous theories being presented, including significant post-rift uplift and isostatically preserved rift anks. Establishing the mechanisms that generate topography and the onshore evolution across passive margins is vital in understanding regional geological histories and their wider development. The passive margins of the NW Atlantic realm exhibit high elevation topography topped with low relief summits. The origin of this topography is debated, with both 3 km of uplift in the post-rift stage and the isostatic preservation of Cretaceous rift anks being suggested within the literature. The work of this thesis aims to resolve this debate by establishing the timing and source of uplift across the region and determining the onshore evolution prior to, during and after rifting with the application of apatite low temperature thermochronology. Contemporary analytical and modelling techniques are utilised to generate thermal histories from across both central West Greenland and SE Baffin Island, helping to de ne how the modern landscape has formed. Results from this work outline an onshore history dominated by uplift in the Cretaceous and exhumation throughout the Cenozoic. Basement samples from SW Greenland exhibit protracted cooling throughout the Mesozoic and Cenozoic, implying low rates of exhumation have been apparent throughout. Within the Nuussuaq Basin, centralWest Greenland, thermal histories display reheating i through the Late Cretaceous/Palaeogene and cooling to present, consistent with events outlined in the basin's stratigraphy and implying uplift of the topography is likely the result of extrusive volcanism and an isostatic response to the unroo ng of the lithosphere. Spatial trends in data and thermal histories across SE Ba n Island imply much of the landscape is shaped by rift ank uplift along its SE coastline, driving exhumation of the region throughout the Cenozoic. Collectively these results suggest the elevated topography of the NW Atlantic realm is the result of rift related uplift in the Cretaceous, magmatism and widespread exhumation throughout the Cenozoic, preserved by isostatic exure. This interpretation of the region's onshore history contributes greatly to our understanding of the NW Atlantic's geological evolution. The results highlight the role of extensional tectonism, exhumation and isostasy in shaping both margin's landscapes and helps to determine the principal characteristics of the wider extensional system and the evolution of the o shore domain. Moreover, these conclusions have a wider relevance to the evolution of passive margins across the North Atlantic, improving our understanding of how topography across other margins, such as of East Greenland, Norway and the UK, has formed.
97

Recent and future drying of the Mediterranean region: anthropogenic forcing, natural variability and social impacts

Kelley, Colin Patrick January 2014 (has links)
The Mediterranean region has experienced persistent drying since the middle of the 20th Century and global climate models project further drying in the future as a consequence of increasing greenhouse gases. The Mediterranean region is also known to oscillate between decades of relatively wet and dry conditions due to the strong influence of multidecadal North Atlantic Oscillation (NAO). It is therefore of great importance to understand the relationship between forced long-term drying resulting from human influences and those due to natural variability. To this end, we used observations, reanalyses and comprehensive global climate models in this thesis research. The roles of anthropogenic climate change and internal climate variability in causing the Mediterranean region's late 20th Century extended winter drying trend were examined using 20th Century observations as well as 19 coupled climate models from the CMIP3. The drying was strongly influenced by the robust positive trend in the NAO from the 1960s to the 1990s. Model simulations and observations were used to assess the probable relative roles of radiative forcing and internal variability in explaining the circulation trend that drove much of the precipitation change. It was concluded that the radiatively forced trends were a small fraction of the total observed trends. Instead it was argued that the robust trends in the observed NAO and Mediterranean rainfall during this period were largely due to multidecadal internal variability with a small contribution from the external forcing. Differences between the observed and NAO associated precipitation trends are consistent with those expected as a response to radiative forcing. The radiatively forced trends in circulation and precipitation are expected to strengthen in the current century and these results highlight the importance of their contribution to future precipitation changes in the region. The Mediterranean precipitation climatology and trend were further examined by comparing the newest generation of global climate models (CMIP5) used in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report, to the previous generation (CMIP3) and to observations over the latter half of the 20th Century for both the summer and winter half years. The observed drying trend since 1950 was predominantly due to winter drying, with very little contribution from the summer. However, in the CMIP5 multimodel mean, the precipitation trend since 1950 is evenly divided throughout the seasonal cycle. This may indicate that in observation, multidecadal internal variability, particularly that associated with the NAO, dominates the wintertime trend. An estimate of the observed externally forced trend showed that winter drying dominated in observations but the spatial patterns were grossly similar to the multimodel mean trend. The similarity was particularly robust in the eastern Mediterranean region, indicating a radiatively forced component being stronger there. These results also revealed modest improvement for the CMIP5 multimodel ensemble in representation of the observed six-month winter and summer climatology. We further explored the detailed mechanisms leading to the NAO-associated precipitation change, such as the role of the change in mean circulation versus that of the storm tracks in the regional moisture budget, which had not been investigated previously. We employed a moisture budget analysis using 15 CMIP5 models and the ERA-Interim Reanalysis to investigate the relationship between the NAO and the various moisture budget terms for the six-month winter and summer. Compared with the ERA-Interim, the models performed well in their simulation of the relationship between the naturally varying NAO and the large-scale moisture budget. Our results indicated that the shift in the midlatitude transient eddies induced modest moisture convergence, rather than divergence, over the Mediterranean under a positive NAO. The reduction in precipitation in this region during a positive NAO was dominated by the mean moisture divergence, which opposed the transient contribution. There were significant differences between the patterns of NAO-induced moisture budget anomaly and changes due to external radiative forcing. Under radiative forcing there was enhanced evaporation over the Mediterranean Sea, Italy and eastern Europe and drying by the shift in the wintertime storms over nearly all of Europe and the Mediterranean. Under a positive phase of the NAO, on the other hand, there was modest reduction in evaporation and wetting by the storms over the Mediterranean, and drying over northern Europe. The dependence of the Mediterranean moisture budget on the NAO was similarly explored in the summer half of the year and in this season the models exhibited more disagreement with observations, but otherwise showed the similar results as winter. The stronger anthropogenic induced drying signal over the eastern Mediterranean provided a basis to examine the possible cause and impact of the recent severe and persistent drought in Syria that occurred directly prior to the uprising of 2011. The drought devastated Syrian agriculture, resulting in food shortages, widespread unemployment, the collapse of rural social structure and a mass migration of agricultural refugees to Syria's urban areas. Anger at the government's failure to ameliorate conditions was one spark for the uprising that evolved into civil war. We found that though droughts occur periodically in Syria due to natural causes it is likely that the recent drought was more extreme due to the century long drying trend caused by increased radiative forcing. It was estimated that the anthropogenic trend made a drought of such severity several times more likely. Droughts as persistent as the recent one are projected to be commonplace in a future warmer world.
98

A variable North Atlantic sink for anthropogenic CO2 : modelling observed change

Lebehot, Alice January 2018 (has links)
To determine the maximum carbon dioxide (CO2) emissions consistent with a given global warming threshold, the scientific community must robustly quantify what proportion of human emitted CO2 will be taken up by the terrestrial and marine carbon reservoirs. The North Atlantic Ocean is a region of intense uptake of atmospheric CO2. To assess how the North Atlantic CO2 sink has evolved over the past decades and understand the mechanisms involved in that uptake, observations and models are used. To appreciate the strengths and limitations of observation-based and modelled products, I explore the sources of uncertain- ties of two widely-used biogeochemical observational products (GLODAP and SOCAT), and carefully evaluate the latest generation of Earth System Models (ESMs) (i.e. the CMIP5 models) against these data. The lack of robust uncertainties on observation-based estimates of the North Atlantic CO2 uptake has so far limited the community’s ability to use observed trends to evaluate CO2 uptake behaviour simulated by the models. Here, by making use of the strengths of observation-based and modelled products, a novel gap-filling and uncertainty assessment method is developed to (1) robustly quantify the recent change in the basin-wide North Atlantic CO2 sink, and (2) evaluate simulations of the recent uptake in ESMs. Through the assessment of robust interpolation uncertainties on the annually-varying North Atlantic CO2 uptake and on the resulting trends over the period 1992-2014, I find that (1) the North Atlantic CO2 uptake increased at a rate of 0.081 ± 0.012 PgC/yr/decade from 1992- 2014, corresponding to an additional uptake of 2.2 PgC over this interval relative the flux in the 1992, and (2) state-of-the-art ESMs are consistently biased to lower trend values, with a mean that is about three times smaller than the observation-based trend, equating to an additional uptake of only 0.72 ± 0.40 PgC over the period 1992-2014. I further show that the inability of these models to capture the observed increase in CO2 uptake is due primarily to biases in modelled ocean biogeochemistry, which I explore through comparison with observations. Our current understanding of the ocean carbon-cycle, as synthesised by ESMs, cannot explain the recent behaviour of the North Atlantic CO2 sink. Current projections may therefore underestimate the contribution of the North Atlantic to mitigating increasing future atmospheric CO2 concentrations.
99

The variability of North American winter surface temperature and its relation to the sea surface temperature /

Li, Wei, 1982- January 2006 (has links)
No description available.
100

The Greenland Ice Sheet: Reconstruction under Modern-Day Conditions and Sensitivity to the North Atlantic Oscillation

Pingree, Katherine A. January 2010 (has links) (PDF)
No description available.

Page generated in 0.0408 seconds