• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 1
  • Tagged with
  • 72
  • 72
  • 72
  • 17
  • 17
  • 17
  • 16
  • 15
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Nutrient dynamics during winter convection in the North Atlantic Subtropical Gyre

Walker, Carolyn Faye, n/a January 2009 (has links)
Storm-induced open-ocean convective mixing is one of the primary processes controlling the supply of nitrate to the sunlit layer of the oligotrophic North Atlantic Subtropical Gyre (NASG). Yet, the magnitude and timing of nitrate fluxes during winter convection is poorly understood due to an absence of targeted process studies. In the northwest NASG, multiple quasi-Lagrangian studies were conducted during the boreal winters of 2004 and 2005 in an effort to sample strong winter convection. During each of the time-series studies, inventories of vertically fluxed nitrate were quantified approximately every twelve hours using the distribution of helium isotopes ([delta]�He) and nitrate in the water column. This method is known as the Helium Flux Gauge Technique (HFGT). Large variability in surface forcing and density structure of the upper ocean was observed between the two years; however, only winter 2005 experienced convective mixing to depths greater than 150 m. In winter 2004, mild atmospheric conditions coincided with a positive phase in the winter North Atlantic Oscillation (NAO), consistent with the dominant regime experienced during the previous decade. On average 36 � 9 mmol m[-2] of fluxed nitrate was inferred by excess �He in the mixed layer of the ocean during the winter 2004 study period. This inventory of physically transported nitrate is attributed to the sampling of waters laterally advected from nearby eddy features. The sampling of multiple water masses is likely due to the inability of the drogue to persistently follow water masses efficiently. Although physical evidence indicates spatial variability within the time-series data, the length scales of convective mixing appear to be greater than those associated with spatial aliasing as a result of drogue performance. This observation provides us with increased confidence that the objectives for the present study are not compromised by spatial variability in the data. In contrast, winter 2005 experienced a negative NAO, strong physical forcing and convective mixing to depths > 250 m. Two convectively modified water masses, most likely resulting from a single storm event, were sampled at different stages of development. These two water masses exhibit large variability in the magnitude of nitrate entrained in the convective layer from the thermocline. An average inventory of 247 � 56 mmol NO₃[-]m[-2] was entrained in the rapidly expanding convective layer of the first water mass in the first few days following the storm approach. In contrast, ongoing entrainment of nitrate was absent from the second water mass, sampled two weeks later when the depth of the surface mixed layer was consistently ~ 300 m. These results indicate that surrounding fluid is entrained into the convective layer when it is actively expanding in the vertical. On the other hand, significant fluid entrainment does not occur at the base of the plume once sinking waters have reached a level of neutral buoyancy. The persistence of elevated nitrate stocks (~ 100 mmol m[-2]) in the convective layer two to three weeks after the inferred injection event, suggests sub-optimal nitrate uptake by resident phytoplankton. Phytoplankton growth was most likely resource limited by light or a micronutrient such as iron. Despite the implied biolimitation, changes in chlorophyll-a, a proxy for phytoplankton biomass, indicate net production within the convective layer. On average, the convective layer was observed to support an inventory of 62 � 6mg chlorophyll-a m[-2], increasing at an average rate of 3.4mg m[-2] d[-1]. This inventory indicates a slow build-up of phytoplankton biomass to near bloom levels, ahead of the main spring bloom that typically follows formation of the seasonal thermocline near Bermuda. Net production in the convective layer was likely due to transient periods of increased (weak) surface stability that were observed to support high phytoplankton biomass, following the cessation of thermocline fluid entrainment. When nitrate and excess �He in samples collected from the thermocline were regressed for the purpose of quantifying nitrate fluxes, the results showed that between 1.6 - 2.0 [mu]mol kg[-1] of dissolved nitrate was present during formation of the water mass. This suggests the source of this excess (above Redfield ratios) nitrate in the thermocline of the NASG is not local, and has ramifications for local nitrogen fixation budgets determined using geochemical approaches. Thesis supervisors: William J. Jenkins, Senior Scientist, WHOI (United States of America); Philip W. Boyd, Senior Scientist, NIWA (New Zealand); Michael W. Lomas, Senior Scientist, BIOS (Bermuda)
52

Nutrient dynamics during winter convection in the North Atlantic Subtropical Gyre

Walker, Carolyn Faye, n/a January 2009 (has links)
Storm-induced open-ocean convective mixing is one of the primary processes controlling the supply of nitrate to the sunlit layer of the oligotrophic North Atlantic Subtropical Gyre (NASG). Yet, the magnitude and timing of nitrate fluxes during winter convection is poorly understood due to an absence of targeted process studies. In the northwest NASG, multiple quasi-Lagrangian studies were conducted during the boreal winters of 2004 and 2005 in an effort to sample strong winter convection. During each of the time-series studies, inventories of vertically fluxed nitrate were quantified approximately every twelve hours using the distribution of helium isotopes ([delta]�He) and nitrate in the water column. This method is known as the Helium Flux Gauge Technique (HFGT). Large variability in surface forcing and density structure of the upper ocean was observed between the two years; however, only winter 2005 experienced convective mixing to depths greater than 150 m. In winter 2004, mild atmospheric conditions coincided with a positive phase in the winter North Atlantic Oscillation (NAO), consistent with the dominant regime experienced during the previous decade. On average 36 � 9 mmol m[-2] of fluxed nitrate was inferred by excess �He in the mixed layer of the ocean during the winter 2004 study period. This inventory of physically transported nitrate is attributed to the sampling of waters laterally advected from nearby eddy features. The sampling of multiple water masses is likely due to the inability of the drogue to persistently follow water masses efficiently. Although physical evidence indicates spatial variability within the time-series data, the length scales of convective mixing appear to be greater than those associated with spatial aliasing as a result of drogue performance. This observation provides us with increased confidence that the objectives for the present study are not compromised by spatial variability in the data. In contrast, winter 2005 experienced a negative NAO, strong physical forcing and convective mixing to depths > 250 m. Two convectively modified water masses, most likely resulting from a single storm event, were sampled at different stages of development. These two water masses exhibit large variability in the magnitude of nitrate entrained in the convective layer from the thermocline. An average inventory of 247 � 56 mmol NO₃[-]m[-2] was entrained in the rapidly expanding convective layer of the first water mass in the first few days following the storm approach. In contrast, ongoing entrainment of nitrate was absent from the second water mass, sampled two weeks later when the depth of the surface mixed layer was consistently ~ 300 m. These results indicate that surrounding fluid is entrained into the convective layer when it is actively expanding in the vertical. On the other hand, significant fluid entrainment does not occur at the base of the plume once sinking waters have reached a level of neutral buoyancy. The persistence of elevated nitrate stocks (~ 100 mmol m[-2]) in the convective layer two to three weeks after the inferred injection event, suggests sub-optimal nitrate uptake by resident phytoplankton. Phytoplankton growth was most likely resource limited by light or a micronutrient such as iron. Despite the implied biolimitation, changes in chlorophyll-a, a proxy for phytoplankton biomass, indicate net production within the convective layer. On average, the convective layer was observed to support an inventory of 62 � 6mg chlorophyll-a m[-2], increasing at an average rate of 3.4mg m[-2] d[-1]. This inventory indicates a slow build-up of phytoplankton biomass to near bloom levels, ahead of the main spring bloom that typically follows formation of the seasonal thermocline near Bermuda. Net production in the convective layer was likely due to transient periods of increased (weak) surface stability that were observed to support high phytoplankton biomass, following the cessation of thermocline fluid entrainment. When nitrate and excess �He in samples collected from the thermocline were regressed for the purpose of quantifying nitrate fluxes, the results showed that between 1.6 - 2.0 [mu]mol kg[-1] of dissolved nitrate was present during formation of the water mass. This suggests the source of this excess (above Redfield ratios) nitrate in the thermocline of the NASG is not local, and has ramifications for local nitrogen fixation budgets determined using geochemical approaches. Thesis supervisors: William J. Jenkins, Senior Scientist, WHOI (United States of America); Philip W. Boyd, Senior Scientist, NIWA (New Zealand); Michael W. Lomas, Senior Scientist, BIOS (Bermuda)
53

Application des méthodes de datation par luminescence optique à l'environnement océanique de l'Atlantique Nord.

Anasse, Jennane, January 2002 (has links)
Thèse (D.R.Min.) -- Université du Québec à Chicoutimi, 2002. / La p. de t. porte en outre: Thèse présentée à l'Université du Québec à Chicoutimi pour l'obtention du doctorat en ressources minérales offert à l'Université du Québec à Montréal en vertu d'un protocole d'entente avec l'Université du Québec à Chicoutimi. CaQCU Bibliogr.: f. [121]-128. Document électronique également accessible en format PDF. CaQCU
54

On the Horizontal Advection and Biogeochemical Impacts of North Atlantic Mode Waters and Boundary Currents

Palter, Jaime Beth, January 2007 (has links)
Thesis (Ph. D.)--Duke University, 2007.
55

On the propagation of free topographic Rossby waves near continental margins

Ou, Hsien Wang January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Meteorology, 1979. / Vita. / Bibliography: leaves 121-122. / by Hsien Wang Ou. / Ph.D.
56

Optimization Of An Unstructured Finite Element Mesh For Tide And Storm Surge Modeling Applications In The Western North Atlantic Ocean

Kojima, Satoshi 01 January 2005 (has links)
Recently, a highly resolved, finite element mesh was developed for the purpose of performing hydrodynamic calculations in the Western North Atlantic Tidal (WNAT) model domain. The WNAT model domain consists of the Gulf of Mexico, the Caribbean Sea, and the entire portion of the North Atlantic Ocean found west of the 60° W meridian. This high resolution mesh (333K) employs 332,582 computational nodes and 647,018 triangular elements to provide approximately 1.0 to 25 km node spacing. In the previous work, the 333K mesh was applied in a Localized Truncation Error Analysis (LTEA) to produce nodal density requirements for the WNAT model domain. The goal of the work herein is to use these LTEA-based element sizing guidelines in order to obtain a more optimal finite element mesh for the WNAT model domain, where optimal refers to minimizing nodes (to enhance computational efficiency) while maintaining model accuracy, through an automated procedure. Initially, three finite element meshes are constructed: 95K, 60K, and 53K. The 95K mesh consists of 95,062 computational nodes and 182,941 triangular elements providing about 0.5 to 120 km node spacing. The 60K mesh contains 60,487 computational nodes and 108,987 triangular elements. It has roughly 0.5 to 185 km node spacing. The 53K mesh includes 52,774 computational nodes and 98,365 triangular elements. This is a particularly coarse mesh, consisting of approximately 0.5 to 160 km node spacing. It is important to note that these three finite element meshes were produced automatically, with each employing the bathymetry and coastline (of various levels of resolution) of the 333K mesh, thereby enabling progress towards an optimal finite element mesh. Tidal simulations are then performed for the WNAT model domain by solving the shallow water equations in a time marching manner for the deviation from mean sea level and depth-integrated velocities at each computational node of the different finite element meshes. In order to verify the model output and compare the performance of the various finite element mesh applications, historical tidal constituent data from 150 tidal stations located within the WNAT model domain are collected and examined. These historical harmonic data are applied in two types of comparative analyses to evaluate the accuracy of the simulation results. First, qualitative comparisons are based on visual sense by utilizing plots of resynthesized model output and historical tidal constituents. Second, quantitative comparisons are performed via a statistical analysis of the errors between model response and historical data. The latter method elicits average phase errors and goodness of average amplitude fits in terms of numerical values, thus providing a quantifiable way to present model error. The error analysis establishes the 53K finite element mesh as optimal when compared to the 333K, 95K, and 60K meshes. However, its required time step of less than ten seconds constrains its application. Therefore, the 53K mesh is manually edited to uphold accurate simulation results and to produce a more computationally efficient mesh, by increasing its time step, so that it can be applied to forecast tide and storm surge in the Western North Atlantic Ocean on a real-time basis.
57

Internal gravity waves and sediment transport in Hudson Submarine Canyon

Hotchkiss, Frances Luellen Stephenson January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1980. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 111-115. / by Frances Luellen Stephenson Hotchkiss. / M.S.
58

Composition and characteristics of particles in the ocean : evidence for present day resuspension

Richardson, Mary Josephine January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1980. / Microfiche copy available in Archives and Science. / Vita. / Bibliography : leaves 227-236. / by Mary Josephine Richardson. / Ph.D.
59

Structure and dynamics of the benthic boundary layer above the Hatteras Abyssal Plain

D'Asaro, Eric Arthur January 1980 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1980. / Microfiche copy available in Archives and Science. / Bibliography: leaves 92-98. / by Eric Arthur D'Asaro. / Ph.D.
60

The diurnal tides on the Northeast continental shelf off North America

Daifuku, Peter Reid January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Science, 1981. / Microfiche copy available in Archives and Science. / Vita. / Bibliography: leaves 95-96. / by Peter Reid Daifuku. / M.S.

Page generated in 0.0668 seconds