• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réponses des neurones du noyau sensoriel principal du trijumeau à la stimulation de leurs afférences primaires

Pastor Bernier, Alexandre January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
2

Réponses des neurones du noyau sensoriel principal du trijumeau à la stimulation de leurs afférences primaires

Pastor Bernier, Alexandre January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
3

Rôle des astrocytes dans la décharge rythmique neuronale du noyau sensoriel principal du trijumeau

Morquette, Philippe 12 1900 (has links)
La communication entre les neurones est fondée sur leur capacité à changer leur patron de décharge pour l’encodage de différents messages. Pour plusieurs fonctions vitales, comme la respiration et la mastication, les neurones doivent pouvoir générer des patrons d’activité répétitifs, et les groupes de neurones responsables de ces décharges rythmiques sont des générateurs de patron central (GPC). En dépit de recherches soutenues, les mécanismes précis qui sous-tendent la rythmogénèse dans les GPCs ne sont pas bien définis. Le plus souvent, la potentielle contribution des astrocytes demeure grandement inexplorée, même si ces cellules sont aujourd’hui connues pour leur implication dans la modulation synaptique neuronale. Pour nos travaux, le noyau sensoriel principal du trijumeau (NVsnpr) a été pris comme modèle à cause de son rôle central dans les mouvements rythmiques de la mastication. Dans ce noyau, des travaux antérieurs ont montré que la décharge en bouffées rythmiques est déclenchée dans les neurones lorsque la concentration de calcium extracellulaire ([Ca2+]e) est artificiellement baissée. Nous fondant sur cette observation, notre première hypothèse a postulé que la baisse de la [Ca2+]e pouvait survenir de façon physiologique en lien avec des stimulations sensorielles pertinentes. Deuxièmement, parce que les astrocytes ont été impliqués dans le tamponnage et l’homéostasie d’ions extracellulaires comme le K+, nous avons postulé que ces cellules pouvaient jouer un rôle équivalent dans le contrôle de la [Ca2+]e. Nos résultats montrent que les astrocytes peuvent réguler la [Ca2+]e et ainsi contrôler la capacité des neurones à changer leur patron de décharge. Premièrement, en stimulant les afférences sensorielles au NVsnpr, nous avons montré que des baisses physiologiques de la [Ca2+]e sont observées en parallèle à l’apparition de bouffées rythmiques neuronales. Deuxièmement, nous avons démontré que les astrocytes répondent aux mêmes stimuli qui induisent l’activité rythmique neuronale, et que leur blocage avec un chélateur de Ca2+ empêche les neurones de générer un patron de décharge en bouffées rythmiques. Cette habilité est rétablie en rajoutant la S100β, une protéine astrocytaire liant le Ca2+, dans le milieu extracellulaire, alors que l’anticorps anti-S100β empêche l’activité rythmique. Ces résultats indiquent que les astrocytes régulent une propriété neuronale fondamentale : la capacité à changer de patron de décharge. Ainsi, les GPCs dépendraient des fonctions intégrées des astrocytes et des neurones. Ces découvertes pourraient avoir des implications transposables à plusieurs autres circuits neuronaux dont la fonction dépend de l’induction d’activité rythmique. / Communication between neurons rests on their capacity to change their firing pattern to encode different messages. For several vital functions, such as respiration and mastication, neurons need to generate a repetitive firing pattern, and the groups of neurons responsible for these rhythmic discharges are called central pattern generator (CPG). Despite intense research in this field, the exact mechanisms underlying rhythmogenesis in CPGs are not completely defined. In most instances, the potential contribution of astrocytes is largely unexplored, even though these cells are now well known to be involved in neuronal synaptic modulation. In our work, the trigeminal main sensory nucleus (NVsnpr) was used as a model owing to its central role in the rhythmic movement of mastication. Previous work have shown that rhythmic bursting discharge is triggered in NVsnpr neurons when extracellular calcium concentration ([Ca2+]e) is artificially decreased. Based on this observation, our first hypothesis postulated that the reduction of [Ca2+]e could also happen physiologically in relation to relevant sensory stimulation. Secondly, because astrocytes have been involved in the buffering and the homeostasis of extracellular ions like potassium, we have postulated that these cells could also play a role in the control of [Ca2+]e. The results presented in this thesis show that astrocytes can regulate [Ca2+]e and thus control the ability of neurons to change their firing pattern. First, we showed that stimulation of sensory afferent fibers to the NVsnpr induced neuronal rhythmic bursting and in parallel reduction of [Ca2+]e . Secondly, we have demonstrated that astrocytes respond to the same sensory stimuli that induce neuronal rhythmic activity, and their blockade with a Ca2+ chelator prevents generation of neuronal rhythmic bursting. This ability is restored by adding S100β, an astrocytic Ca2+-binding protein, to the extracellular space, while the application of an anti- S100β antibody prevents generation of rhythmic activity. These results indicate that astrocytes regulate a fundamental neuronal property: that is the capacity to change their firing pattern. Thus, CPG functions result from integrated neuronal and glial activities. These findings may have broad implications for many other neural networks whose functions depend on the generation of rhythmic activity.
4

Caractérisation spatiale des syncytia formés par le couplage des astrocytes du noyau sensoriel principal du nerf trijumeau en fonction de la concentration de calcium extracellulaire.

Lavoie, Raphaël 01 1900 (has links)
Le mouvement masticatoire est généré et coordonné par un générateur de patron central (GPC) situé au niveau du pont. Plusieurs résultats antérieurs de notre laboratoire soutiennent que le réseau de neurones à l’origine de la rythmogénèse est situé dans le noyau sensoriel principal du nerf trijumeau (NVsnpr). Ces mêmes expériences révèlent que des diminutions de la concentration calcique extracellulaire ([Ca2+]e) tiennent une place importante dans la génération des bouffées de décharges des neurones de cette région. Notre laboratoire tente de vérifier si la contribution des astrocytes à l’homéostasie de la concentration calcique extracellulaire est impliquée dans la genèse du rythme. Cette étude a pour but la caractérisation spatiale du syncytium astrocytaire au sein du NVsnpr dorsal et l’étude de l’effet de la [Ca2+]e sur les propriétés astrocytaires électrophysiologiques et de connectivité. Nous avons utilisés pour ce faire la technique d’enregistrement par patch-clamp sur une préparation en tranche de tronc cérébral de rat. Nous démontrons ici que la diminution de la [Ca2+]e n’affecte pas les propriétés électrophysiologiques astrocytaires, mais induit une augmentation de la taille du syncytium. De plus, nous établissons l’existence au sein du NVsnpr dorsal d’une organisation anatomofonctionnelle du réseau astrocytaire calquée sur l’organisation neuronale. / The masticatory movement is generated and coordinated by a central pattern generator (CPG) located in the pons. Previous results from our laboratory suggest that the neural network responsible for its rythmogenesis is located in the trigeminal main sensory nucleus (NVsnpr). Moreover, results indicate that in this region, decrease in extracellular calcium concentration ([Ca2+]e) plays an important role in genarating burst. One of our laboratory's goal is to assess if the contribution of astrocytes to the extracellular calcium concentration homeostasis is involved in the genesis of the mastication rhythm. With this study, we characterized the astrocyte syncytium within the NVsnpr and measured the effect of [Ca2+]e on the astrocytes electrophysiology and their networks. A patch-clamp recording technique in conjunction with a rat brain stem slice preparation was used. We demonstrate that a decrease in [Ca2+]e does not affect the electrophysiological properties of astrocytes but induces an increase in the size of the syncytium. We also report the existence, within the dorsal NVsnpr, of an anatomofunctional organization between neurons and astrocytes.
5

Caractérisation spatiale des syncytia formés par le couplage des astrocytes du noyau sensoriel principal du nerf trijumeau en fonction de la concentration de calcium extracellulaire

Lavoie, Raphaël 01 1900 (has links)
No description available.
6

Organisation anatomique et rôle du couplage astrocytaire dans l’activité rythmique du noyau sensoriel du trijumeau

Condamine, Steven 12 1900 (has links)
Plusieurs fonctions cérébrales dépendent de la capacité de générer une activité rythmique dans les circuits neuronaux. L’exemple le plus intuitif est celui des réseaux de neurones, nommés générateurs de patrons centraux (GPCs), encodant des patrons de mouvements répétitifs tels que ceux de la locomotion, de la respiration et de la mastication. Nos travaux ont été réalisés dans le noyau sensoriel principal du trijumeau (NVsnpr) dans lequel une activité rythmique est observée uniquement dans la partie dorsale qui formerait le cœur rythmogénique du GPC de la mastication. Des travaux antérieurs ont démontré le rôle clé des interactions astrocytes-neurones pour la genèse de décharges rythmiques. En effet, l’activité rythmogénique de ces neurones dépend d’un courant sodique persistant (INaP) dont l’activation est favorisée par une baisse du calcium extracellulaire. Les astrocytes activés par les afférences au noyau interviennent dans ce processus en libérant une protéine chélatrice du calcium, le S100β, provoquant une baisse de calcium extracellulaire. Les astrocytes sont généralement couplés par des jonctions communicantes et dans de nombreux cas, la forme des réseaux astrocytaires chevauche parfaitement l’organisation neuronale sous-jacente dans les régions où celle-ci respecte une certaine cartographie. Cependant, il n’existe aucune description de l’organisation des réseaux astrocytaires dans les GPCs. Notre première hypothèse est que le couplage astrocytaire présenterait une organisation spatiale supportant la fonction rythmogénique neuronale située exclusivement dans la partie dorsale du NVsnpr. Pour cela, nous avons développé une méthode d’analyse vectorielle pour étudier l’orientation préférentielle des réseaux astrocytaires dans le noyau. Deuxièmement, ce couplage astrocytaire pourrait jouer un rôle dans la rythmogenèse et sa coordination. Nos résultats démontrent que le couplage astrocytaire est augmenté par les stimuli induisant la rythmogenèse, cette modulation impliquant le S100β. Ces réseaux d’astrocytes présentent une étendue limitée et une organisation spatiale qui épouse les frontières de la partie dorsale du NVsnpr. Enfin, ce couplage astrocytaire est nécessaire à la rythmogenèse. Ces résultats démontrent l’implication des réseaux astrocytaires dans la délimitation d’une frontière fonctionnelle et suggèrent qu’ils pourraient jouer un rôle important dans la coordination et/ou la synchronisation de la décharge des populations. Cette implication des réseaux astrocytaires dans une activité rythmique pourrait être observée dans d’autres circuits neuronaux comme les GPCs de la respiration ou de la locomotion. / Several cerebral functions depend on the capacity of neuronal circuit to generate rhythmic activity. The most intuitive example is neuronal circuits referred to as central pattern generators (CPGs), which encode the repetitive movement patterns for locomotion, respiration and mastication. Our work was performed in the trigeminal main sensory nucleus where rhythmic activity observed only in the dorsal part is thought to reflect the rhythmogenic core of the masticatory CPG. Previous studies have shown the key role that astrocytes-neurons interactions play in neuronal rhythmic firing. In these neurons, rhythmogenic activity relies on a sodium persistent current (INaP) which activation is promoted by a decrease of extracellular calcium. Astrocytes activated by afferences to the nucleus take part in this process by releasing S100β, a protein that chelates calcium and promotes INaP activation by decreasing extracellular calcium. Generally, astrocytes are coupled by gap junctions and in many cases where neurons are organized topographically, the shape of astrocytic networks overlap perfectly the underlying neuronal organization. However, the organization of astrocytic networks in CPGs has not been described so far. Our first hypothesis is that the organization of astrocytic coupling supports the rhythmogenic function in the dorsal part of the NVsnpr. We developed a vectorial analysis method to address the preferential orientation of astrocytic networks in the nucleus. Secondly, astrocytic coupling could be implicated in rhythmogenesis. The results presented in this thesis show that rhythmogenic stimuli increase astrocytic coupling and S100β is implicated in this modulation. Astrocytic networks show a limited spread and a spatial organization which follow the boundaries of the dorsal part of NVsnpr. Finally, astrocytic coupling is required for rhythmogenesis. Our results indicate that astrocytic networks define functional boundaries and suggest that they could play an important role in the coordination and/or synchronization of firing of neuronal populations. Astrocytic coupling may also play a similar role in other neural circuits such as locomotion and respiration CPG.
7

Organisation anatomique et rôle du couplage astrocytaire dans l’activité rythmique du noyau sensoriel du trijumeau

Couillard-Larocque, Marc 04 1900 (has links)
De nombreuses fonctions cérébrales dépendent de la capacité de réseaux de neurones à générer une activité rythmique. Les réseaux neuronaux, nommés générateurs de patron centraux (GPCs), contrôlant les patrons de mouvements répétitifs comme la locomotion, la respiration et la mastication en sont un exemple important. Des travaux antérieurs ont montré que le noyau sensoriel principal du trijumeau (NVsnpr), qui fait partie du GPC de la mastication, contient des neurones qui peuvent décharger de façon rythmique et que les astrocytes et leur protéine S100ß étaient nécessaires pour cette rythmogénèse neuronale. Cependant, l’effet de l’activation directe des astrocytes sur la décharge des neurones du NVsnpr n’a jamais été investigué. De plus, comme les astrocytes forment des réseaux bien définis dans le NVsnpr, nous avons émis l’hypothèse que l’activation de ces réseaux pourrait contribuer à synchroniser l’activité rythmique de groupes de neurones. Pour investiguer ces deux questions, nous avons utilisé des enregistrements en mode cellules entières de neurones et d’astrocytes du NVsnpr lors de stimulations optogénétiques des astrocytes chez des souris transgéniques. Différentes lignées de souris transgéniques ont été utilisées pour exprimer des protéines photosensibles comme la channelrhodopsin (ChR2) ou le récepteur adrénergique α-1 dans les astrocytes du NVsnpr dans le but de pouvoir les stimuler par l’exposition à la lumière. De ces lignées, seul le croisement de souris S100β-Cre à des souris ChR2-lox donna des réponses significatives. Ces résultats démontrent que la stimulation optogénétique des astrocytes du NVsnpr cause divers effets sur la décharge neuronale, dont la genèse de bouffées rythmiques. Cependant, l’enregistrement de paires de neurones n’a pas permis de confirmer l’implication des astrocytes dans la synchronisation de l’activité rythmique des neurones de NVsnpr. Ces résultats permettent d’affiner les méthodes d’études des astrocytes dans le système trigéminal ainsi que de confirmer l’implication des astrocytes dans une activité rythmique, une implication qui pourrait potentiellement être observée dans d’autres structures du système nerveux central comme les GPCs de la locomotion ou de la respiration. / Several cerebral functions depend on the capacity of neural network to generate a rhythmic activity. One prominent example of this is the neural networks, named central pattern generators (CPGs), controlling repetitive movements patterns like locomotion, breathing and chewing. Previous studies have shown that the trigeminal main sensory nucleus (NVsnpr), which is part of the masticatory CPG, contains neurons that can rhythmically discharge and that the astrocytes and their protein, S100β, were essential for this neuronal rhythmogenesis. However, the effect of the activation of astrocytes on neuronal discharge of the NVsnpr remains uninvestigated. Additionally, since astrocytes form well-defined networks in the NVsnpr, we hypothesized that the activation of these networks could help synchronize the rhythmic activity of groups of neurons. To investigate these questions, we used whole cell recordings of neurons and astrocytes of the NVsnpr during optogenetic stimulation of astrocytes in transgenic mice. Different mice strains have been used to express photosensitive proteins such as channelrhodopsin (ChR2) or the α-1 adrenegic receptor in NVsnpr astrocytes to enable their stimulation with light. Of all these strains, only the S100β-Cre X ChR2-lox hybrids provided significant responses. Optogenetic stimulation of NVsnpr astrocytes produced various effects on neuronal discharge, including the genesis of rhythmic bursts. However, the recording of pairs of neurons did not confirm the involvement of astrocytes in the synchronization of the rhythmic activity of NVsnpr neurons. These results contribute to the refinement of methods used to study astrocytes in the trigeminal system and confirm the involvement of astrocytes in rhythmogenesis, an involvement that could be observed in other structures of the central nervous system such as the CPGs for respiration or locomotion.

Page generated in 0.0957 seconds