Spelling suggestions: "subject:"réseaux astrocytaire"" "subject:"éseaux astrocytaire""
1 |
The role of astroglial connexin 30 in sleep homeostasis / Rôle de la connexine 30 astrocytaire dans la régulation du cycle veille-sommeilLiu, Xinhe 23 September 2014 (has links)
Une propriété des astrocytes réside dans leur organisation en réseaux grâce à la présence de jonctions communicantes (CJ) composées par les connexines (Cxs) 43 et 30. A partir de l’observation indiquant que les ARN messagers codant pour la Cx30, mais pas ceux pour la Cx43, sont augmentés suite à une privation de sommeil (PDS), l’objectif de ma thèse a été de déterminer si et comment la Cx30 est impliquée dans la régulation du cycle veille-sommeil. D'abord, mon travail a consisté à analyser les effets de molécules qui perturbent veille-sommeil sur CJ astrocytaire étudiée dans des tranches aigues de cortex de souris. J’ai observé que le modafinil, un psychostimulant, augmentent la CJ. Par contre le GHB (acide γ-Hydroxybutyric), un agent qui induit le sommeil, et deux anesthésiques généraux, le propofol et la kétamine, ont des effets opposés. Ces résultats suggèrent que les réseaux astrocytaires sont régulés de manière différentielle par des drogues qui perturbent veille-sommeil. Et ensuite, ma thèse a consisté à étudier le rôle de la Cx30 en utilisant des souris dont le gène codant pour cette Cx a été invalidé (Cx30 KO). Les Cx30 KOs présentent un déficit dans le maintien de l’éveil lors d’épisodes de forte pression de sommeil: Cx30 KO présentent une augmentation du sommeil à ondes lentes pendant une PDS et elles requièrent un plus grand nombre de stimuli pour rester éveillée lors d’une PDS «douce». Afin d’identifier les causes de ce déficit nous avons observé que: 1) le CJ est augmenté après une PDS et cette augmentation ne s’observe que lorsque la Cx30 est présente 2) le niveau d’expression des ARN messagers de 7 gènes impliqués dans le métabolisme énergétique cérébral est diminué dans plusieurs régions du cerveau chez Cx30 KO. En résumé, ces résultats suggèrent que la Cx30 joue un rôle important dans la régulation du veille-sommeil, probablement en contribuant à la fonction métabolique des astrocytes, ceci afin de répondre à une demande énergétique accrue lors de situations de forte pression de sommeil. / Astrocytes are organized in networks via gap junction channels constituted by connexin (Cx) 30 and Cx43. Since we observed that the mRNA expression of Cx30, but not Cx43, was enhanced after sleep deprivations (SD) in the mouse cortex and hippocampus, the goal of my thesis was to investigate whether and how Cx30 is involved in sleep homeostasis. First, I investigated the effects of sleep/wake-affecting molecules on gap junctional communication (GJC) of astrocytes in acute slices of the mouse cortex. We found that modafinil, a wakefulness-promoting drug, enhanced astroglial GJC, whereas γ-Hydroxybutyric acid (GHB), a sleep-promoting agent, and two general anesthetics, propofol and ketamine, decreased GJC, suggesting that astroglial networks are bidirectionally regulated by sleep/wake-affecting drugs. Then I addressed the role of Cx30 using Cx30 knockout (KO) mice. Compared to wild type (WT) mice, Cx30 KO exhibited a deficit in maintaining wakefulness during periods of high sleep pressure: they needed more stimuli to be maintained awake during gentle SD and they exhibited an increase in slow wave sleep during instrumental SD. To probe the possible causes of the phenotype, we found that: 1) astroglial GJC was enhanced in WT mice after SD, and such enhancement depended on both neuronal activity and the presence of Cx30; 2) mRNA levels of several genes involved in brain energy metabolism were decreased in multiple brain structures of the Cx30 KO. In summary, these results suggest that astroglial Cx30 plays an important role in sleep homeostasis, possibly by enhancing astroglial metabolic functions to fulfil the high energy demand during periods of elevated sleep pressure.
|
2 |
Organisation anatomique et rôle du couplage astrocytaire dans l’activité rythmique du noyau sensoriel du trijumeauCondamine, Steven 12 1900 (has links)
Plusieurs fonctions cérébrales dépendent de la capacité de générer une activité rythmique dans les circuits neuronaux. L’exemple le plus intuitif est celui des réseaux de neurones, nommés générateurs de patrons centraux (GPCs), encodant des patrons de mouvements répétitifs tels que ceux de la locomotion, de la respiration et de la mastication.
Nos travaux ont été réalisés dans le noyau sensoriel principal du trijumeau (NVsnpr) dans lequel une activité rythmique est observée uniquement dans la partie dorsale qui formerait le cœur rythmogénique du GPC de la mastication. Des travaux antérieurs ont démontré le rôle clé des interactions astrocytes-neurones pour la genèse de décharges rythmiques. En effet, l’activité rythmogénique de ces neurones dépend d’un courant sodique persistant (INaP) dont l’activation est favorisée par une baisse du calcium extracellulaire. Les astrocytes activés par les afférences au noyau interviennent dans ce processus en libérant une protéine chélatrice du calcium, le S100β, provoquant une baisse de calcium extracellulaire. Les astrocytes sont généralement couplés par des jonctions communicantes et dans de nombreux cas, la forme des réseaux astrocytaires chevauche parfaitement l’organisation neuronale sous-jacente dans les régions où celle-ci respecte une certaine cartographie. Cependant, il n’existe aucune description de l’organisation des réseaux astrocytaires dans les GPCs.
Notre première hypothèse est que le couplage astrocytaire présenterait une organisation spatiale supportant la fonction rythmogénique neuronale située exclusivement dans la partie dorsale du NVsnpr. Pour cela, nous avons développé une méthode d’analyse vectorielle pour étudier l’orientation préférentielle des réseaux astrocytaires dans le noyau. Deuxièmement, ce couplage astrocytaire pourrait jouer un rôle dans la rythmogenèse et sa coordination.
Nos résultats démontrent que le couplage astrocytaire est augmenté par les stimuli induisant la rythmogenèse, cette modulation impliquant le S100β. Ces réseaux d’astrocytes présentent une étendue limitée et une organisation spatiale qui épouse les frontières de la partie dorsale du NVsnpr. Enfin, ce couplage astrocytaire est nécessaire à la rythmogenèse.
Ces résultats démontrent l’implication des réseaux astrocytaires dans la délimitation d’une frontière fonctionnelle et suggèrent qu’ils pourraient jouer un rôle important dans la coordination et/ou la synchronisation de la décharge des populations. Cette implication des réseaux astrocytaires dans une activité rythmique pourrait être observée dans d’autres circuits neuronaux comme les GPCs de la respiration ou de la locomotion. / Several cerebral functions depend on the capacity of neuronal circuit to generate rhythmic activity. The most intuitive example is neuronal circuits referred to as central pattern generators (CPGs), which encode the repetitive movement patterns for locomotion, respiration and mastication.
Our work was performed in the trigeminal main sensory nucleus where rhythmic activity observed only in the dorsal part is thought to reflect the rhythmogenic core of the masticatory CPG. Previous studies have shown the key role that astrocytes-neurons interactions play in neuronal rhythmic firing. In these neurons, rhythmogenic activity relies on a sodium persistent current (INaP) which activation is promoted by a decrease of extracellular calcium. Astrocytes activated by afferences to the nucleus take part in this process by releasing S100β, a protein that chelates calcium and promotes INaP activation by decreasing extracellular calcium. Generally, astrocytes are coupled by gap junctions and in many cases where neurons are organized topographically, the shape of astrocytic networks overlap perfectly the underlying neuronal organization. However, the organization of astrocytic networks in CPGs has not been described so far.
Our first hypothesis is that the organization of astrocytic coupling supports the rhythmogenic function in the dorsal part of the NVsnpr. We developed a vectorial analysis method to address the preferential orientation of astrocytic networks in the nucleus. Secondly, astrocytic coupling could be implicated in rhythmogenesis.
The results presented in this thesis show that rhythmogenic stimuli increase astrocytic coupling and S100β is implicated in this modulation. Astrocytic networks show a limited spread and a spatial organization which follow the boundaries of the dorsal part of NVsnpr. Finally, astrocytic coupling is required for rhythmogenesis.
Our results indicate that astrocytic networks define functional boundaries and suggest that they could play an important role in the coordination and/or synchronization of firing of neuronal populations. Astrocytic coupling may also play a similar role in other neural circuits such as locomotion and respiration CPG.
|
Page generated in 0.0468 seconds