• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 30
  • 30
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Supraorganização e extensibilidade da cromatina, e composição nuclear em celulas de camundongo / Chromatin supraorganization and extensibility, and nuclear composition in mouse cells

Moraes, Alberto da Silva 26 February 2008 (has links)
Orientador: Maria Luiza Silveira Mello / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-10T21:08:10Z (GMT). No. of bitstreams: 1 Moraes_AlbertodaSilva_D.pdf: 18240611 bytes, checksum: 0c094268046690a939c185449986f74f (MD5) Previous issue date: 2008 / Resumo: Envelhecimento pode ser definido como as mudanças sofridas por um organismo ao longo do tempo. Esse processo, em biologia, é denominado senescência. A senescência celular é um fenômeno observado em células isoladas, e tem sido estudada tipicamente em células em cultura. Sua ocorrência in vivo foi observada em alguns tecidos de mamíferos. As mudanças na estrutura e organização da cromatina que ocorrem em células senescentes incluem, aumento na resistência da cromatina à digestão por nucleases e acúmulo de modificações de histonas e proteínas associadas à heterocromatina. Embora nem todas as células em um organismo envelhecido estejam em estado de senescência, espera-se que mudanças na estrutura e organização da cromatina ocorram. A restrição calórica é a única intervenção conhecida que tem a capacidade de estender o tempo de vida em mamíferos. Após uma dieta de restrição calórica ou jejum muitos genes, cuja expressão encontra-se alterada em animais idosos, têm sua expressão restabelecida aos níveis observados em animais jovens. Acredita-se que mudanças na cromatina também possam ocorrer durante o jejum, e que induzam mudanças no nível de expressão de diversos genes. No presente trabalho, buscando-se alterações na organização da cromatina em hepatócitos de camundongo ao longo do envelhecimento ou submetidos ao jejum, observou-se um aumento das propriedades viscoelásticas da cromatina ao longo do envelhecimento, de acordo com as mudanças na habilidade dessa cromatina em formar fibras estendidas de cromatina. Essas diferenças foram acompanhadas por um desempacotamento da cromatina. Observou-se também que essa viscoelasticidade da cromatina era dependente principalmente de interações desta com a matriz nuclear, e que cópias de genes cuja atividade transcricional não é mais requerida, ou requerida em um nível menor em animais idosos, podem desligar-se temporariamente da matriz nuclear. Mudanças nas propriedades viscoelásticas da cromatina e no seu grau de compactação já haviam sido observadas previamente em animais em jejum. Apesar disso, no presente trabalho, nenhuma diferença com relação à interação dos genes rDNA com a matriz nuclear foi encontrada em animais em jejum. Contudo, independente da condição fisiológica, o DNA aderido à matriz nuclear parece ser rico em genes, enquanto as seqüências heterocromáticas, pobres em genes, geralmente são encontradas tanto associadas com a matriz nuclear quanto dissociadas desta (cuidado com essa conclusão. Está forte). Em hepatócitos de animais idosos foi observado acúmulo de marcadores heterocromáticos (modificações de histonas) e de outras proteínas (proteínas formadoras de heterocromatina e glicoproteínas presentes principalmente nos cromocentros), assim como diminuição das modificações de histonas associadas com transcrição ativa. Todas essas modificações estão relacionadas com alterações na síntese de RNA já relatadas para animais idosos, e são uma evidência de que o controle da expressão gênica, a organização e a composição da cromatina estão intimamente relacionados. Em um outro tipo celular como espermatozóides de camundongo, uma diferente organização nuclear levou a propriedades diferenciadas de sua cromatina com relação às suas propriedades viscoelásticas (aumentadas). Tais diferenças possivelmente estejam relacionadas com um padrão modificado de expressão gênica, uma vez que em espermatozóides, a atividade transcricional é nula ou quase ausente / Abstract: Aging may be defined as the changes that take place in an organism with time. This process, in biology, is called senescence. Cellular senescence is observed in isolated cells, and has been studied typically in cultured cells, but its occurrence in vivo has been shown only in some mammalian tissues. Chromatin changes that take place with cellular senescence include increase in the resistance of chromatin to nuclease digestion and accumulation of histone modifications and non-histone proteins associated with heterochromatin. Although not all cells in an aged organism are subjected to cellular senescence, it is expected that changes in the chromatin structure and organization still occur. Caloric restriction is the only intervention known to extend life span in mammals. It has been shown that many genes whose expression pattern is altered in aged animals can be reverted to the levels observed in young animals after a caloric restriction diet or complete food withdrawal. Changes in chromatin structure may occur during the starvation period to induce changes in the expression level of several genes. With the aim of screening for alterations in the chromatin organization in mouse hepatocyte nuclei with aging or following starvation, we observed an increase in the viscoelastic properties of chromatin with aging, in terms of changes in the ability of this chromatin to form extended chromatin fibers after a lysis treatment in liver imprints on histological slides. These differences were accompanied by chromatin unpackage. Most of the viscoelasticity of the chromatin were dependent on its interactions with the nuclear matrix, and copies of genes whose transcription are no longer required in aged animals, tended to detach from the nuclear matrix. Changes in the viscoelastic properties and packing degree of chromatin had been shown previously in starved animals. However, no differences regarding this feature were seen in the present work. Nevertheless, regardless the physiological condition, DNA attached to the nuclear matrix seems to be gene-rich, while heterochromatic gene-poor regions were found both attached and detached from the nuclear matrix. We observed accumulation of heterochromatic marks (histone modifications) and non-histone proteins (heterochromatin proteins and glycoproteins present mainly in the chromocenters), as well as decreased histone modifications associated with transcription in hepatocyte nuclei of aged mice. All these changes are related to altered RNA synthesis observed in aged animals and are an evidence of the strong relationship between chromatin organization, composition, and control of gene expression. In another cell type, mouse sperm cells, its nuclear organization lead to different chromatin properties regarding its viscoelastic properties (increased). These differences are possibly related to a modified pattern of gene expression since gene transcription is almost or completely absent in sperm cells / Doutorado / Biologia Celular / Doutor em Biologia Celular e Estrutural
22

A study of neutron pairing correlations using the 136Ba(p, t) reaction

Jespere Calderone, Nzobadila Ondze January 2020 (has links)
>Magister Scientiae - MSc / Observation of neutrinoless double beta decay (0 ) is currently the only means by which one could establish the Majorana nature of neutrinos. Additionally, such an observation would determine the absolute neutrino mass scale. However, this requires that the matrix element for a given 0 decay process is accurately calculated. The objective of this project is to provide useful nuclear structure information that aim to improve future theoretical calculations for the nuclear matrix element (NME) of 136Xe 0 decay to 136Ba. We studied neutron pairing correlations in 134Ba using the 136Ba(p; t) reaction to stringently test the Bardeen-Cooper-Schrie er (BCS) approximation in the A = 136 mass region. This is because many theoretical calculations of the NME's for 0 decay are performed using the quasiparticle random phase approximation (QRPA), which uses the BCS approximation to describe the ground states of the even-even parent and daughter nuclei. Our results show a signi cant fragmentation of the neutron-pair transfer to excited 0+ states, implying a breakdown of the BCS approximation in this mass region.
23

Molecular Characterization of Mitofilin, a Novel, Mitochondrial, Coiled Coil Protein, and the Relationship Between Organism Complexity and Coiled Coil Protein-Mediated Structure: A Dissertation

Odgren, Paul R. 01 November 1995 (has links)
In the course of experiments designed to identify and characterize structural proteins of the nuclear matrix, one antibody was generated which recognized an extraction-resistant cytoplasmic protein. This antibody was used as the starting point in the cloning and molecular characterization of a novel protein of the inter-membrane space of the mitochondrion which has been named mitofilin. Mitofilin is expressed in all human cell types, and murine homologues also exist. Mitofilin associates only with mitochondria and not with other membrane-bounded organelles such as Golgi or endoplasmic reticulum. This observation has been confirmed both by biochemical fractionation and multi-label fluorescence microscopy. Recombinant mitofilin, purified to homogeneity by affinity chromatography and preparative electrophoresis, was used to raise second-generation antibodies. Results of Western blot and immunofluorescence microscopy experiments, identical to those obtained using the original monoclonal antibody, verify the cloning and biochemical characterization. The mitofilin polypeptide contains several regions which are predicted to interact by forming coiled coils; a mitochondrial targeting signal; and a hydrophobic, membrane-spanning domain. During the course of this work, a sequence match was found with a cDNA reported by Icho, et al (1994) for a mRNA preferentially expressed in heart muscle, which they have called HMP. Evidence is presented which contradicts those authors' contention that HMP is a kinesin-like motor protein. In the course of these investigations, methods were developed to detect and quantitate the expression of solubilization-resistant proteins of the nuclear matrix and the nuclear matrix-intermediate filament scaffold. This was accomplished by combining SDS-PAGE, high sensitivity chemiluminescent Western blots, and scanning densitometry. Sensitivity in the picogram range was obtained, and reproducibility was assessed. For semi-quantitative measurements of protein expression in tissue samples, cell number was normalized by measurement of lamin B, the major protein of the nuclear envelope. Results of screening several cell and tissue types for the expression of mitofilin and for the nuclear matrix proteins NuMA, the nucleoporin tpr, and lamin B are presented. These preliminary data suggest a potential connection of over-expression of NuMA, tpr, and mitofilin with ovarian carcinoma. In addition, quantitative analysis of mitofilin expression in a variety of human cell types was done using purified recombinant protein antigen as the standard. The presence of coiled coil domains in these and other proteins associated with cellular sub-structures gave rise to the third area of investigation described here. Experimental observations of the nuclear matrix-intermediate filament scaffold (NMIF), a tissue-wide structure greatly enriched in coiled coil proteins, led to the following hypothesis: that the differentiated cell and tissue architecture which characterizes Metazoa has evolved through the propagation and selective expression of genes encoding a wide variety of coiled coil proteins, and the integration of the gene products into a tissue-wide matrix based on coiled coil interactions. This hypothesis was explored by computer searches of sequence data files. The GenBank phylogenetic sequence files were examined with a heptad repeat analysis program to assess the occurrence of coiled coil proteins. how heptad repeat domains are organized within these proteins, and what structural/functional categories they comprised. Of 102,007 proteins analyzed, 5.95% (6074) contained coiled coil domains: 1.26% (1289) contained "extended" (> 75 amino acid) domains. While the frequency of proteins containing coiled coils was surprisingly constant among all biota, extended coiled coil proteins were 4-fold more frequent in the animal kingdom, and may reflect early events in the divergence of plants and animals. Structure/function categories of extended coils also revealed phylogenetic differences. In pathogens and parasites, many extended coiled coil proteins are external and bind host proteins. In animals, the majority of extended coiled coil proteins were identified as constituents of two categories: 1) myosins and motors, or 2) components of the NMIF. This scaffold, produced by sequential extraction of epithelial monolayers in situ, contains only 1-2% of the cell mass while accurately retaining morphological features of living epithelium. The NMIF incorporates many proteins with extensive, interrupted coiled coil forming domains. The increased occurrence of this type of protein in Metazoa compared to plants or protists supports the hypothesis that a tissue-wide matrix of coiled coil interactions underlies metazoan differentiated cell and tissue structure.
24

c-Myc- driven nuclear repositioning of chromosome 11 in mouse plasmacytomas and its clinical significance

Sunpaweravong, Patrapim 27 January 2017 (has links)
Overall, this study enhances our understanding of the role of c-Myc activation in chromosome 11 repositioning in mouse PreB v-abl/myc cells and a possible interaction between telomeres, TRF2, and lamin A/C underlying this phenomenon. Additionally, the importance of human 17q25.3 is confirmed as a potential region involved in NSCLC tumorigenesis. A utilizationof the 3D telomeric organization profiles is demonstrated a tendency to categorize NSCLC patients into different prognostic subgroups, underscoring a potential future value of its clinical application. / February 2017
25

Analysis of the barley (Hordeum vulgare) tightly bound DNA-protein complexes / Miežių (Hordeum vulgare) tvirtų DNR-baltymų kompleksų analizė

Bielskienė, Kristina 02 December 2009 (has links)
Despite a great deal of research, the functional significance of tightly bound DNA-protein complexes is not yet clear, therefore these complexes are perfect object for pioneering research. Very little is known about plant TBP-DNA complexes. In this work we investigated barley TBP-DNA complexes from different organs (first leaves, roots and coleoptiles) at different developmental stages. We characterized individual components of tightly bound DNA-proteins complexes: polypeptides (TBP) and DNA. We isolated and characterized TBP proteins from barley first leaves, roots and coleoptiles of different age and differentiation stage. Also we isolated and characterized the DNA fragments from barley first leaves and water ripe and milky ripe grain TBP-DNA complexes. We demonstrated that in different developmental stages of coleoptiles, first leaves and roots TBP-DNA complexes were identified as a group of 15-160 kDa proteins, most of TBPs are acidic. Some of barley TBPs (10, 25, 38, 40 and 55 kDa) exhibit phosphatase, maybe Ser/Thr activity. We have identified also that some of TBPs tyrosines were phosphorylated, this modification depends on organ and developmental stage. Identified barley TBPs were involved in fundamental genetic processes, as well as in chromatin rearrangement and regulation processes. Nuclear matrix proteins, enzymes, transcription factors, serpins, immunophilins, and transposon polypeptides were identified among TBPs. We demonstrated that expression of TBPs depends... [to full text] / Žinoma, kad pastovi nehistoninių polipetidų frakcija yra išgryninama kartu su eukariotine DNR ir sudaro labai tvirtus (galbūt kovalentinius) kompleksus tarp branduolio baltymų ir DNR. Nustatyta, kad Erlicho ascito tvirtuose DNR-baltymų kompleksuose yra baltymas C1D, baltymai, pasižymintys fosfataziniu ir kinaziniu aktyvumais, kai kurie proteazių slopikliai ir kiti, dar neištirti baltymai. Nepaisant intensyvių tyrinėjimų, eukariotinių ląstelių tvirti DNR-baltymų kompleksai vis dar lieka menkai aprašyti ir yra objektas tolimesniems tyrimams. Augalų TBP-DNR kompleksai kol kas buvo tyrinėti labai mažai. Šiame darbe charakterizuojami miežių Hordeum vulgare tvirti DNR-baltymų kompleksai. Mes tyrėme TBP-DNR kompleksus iš miežių skirtingų ūglių organų ir skirtingų vystymosi stadijų ląstelių: lapų, šaknų, koleoptilės. Norint ištirti tokių nukleoproteidų funkcijas, svarbu charakterizuoti individualius komplekso komponentus: polipeptidus ir DNR. Taigi, išskyrėme tvirtai su DNR sąveikaujančius baltymus iš miežių skirtingos diferenciacijos bei skirtingo amžiaus ląstelių: pirminių lapelių, šaknų, koleoptilės ir juos charakterizavome. Taip pat išskyrėme ir charakterizavome DNR fragmentus iš miežių pirminių lapelių bei vandeninės brandos ir pieninės brandos grūdų TBP-DNR kompleksų. Parodėme, kad miežių TBP baltymai yra 15-160 kDa, dauguma baltymų yra rūgštiniai. Kai kurie iš miežių TBP baltymų (10, 25, 38, 40 ir 55 kDa) pasižymi fosfataziniu, galbūt, Ser/Thr aktyvumu. Nustatėme, kad tam... [toliau žr. visą tekstą]
26

Miežių (Hordeum vulgare) tvirtų DNR-baltymų kompleksų tyrimas / Analysis of the barley (Hordeum vulgare)tightly bound DNA-protein complexes

Bielskienė, Kristina 02 December 2009 (has links)
Žinoma, kad pastovi nehistoninių polipetidų frakcija yra išgryninama kartu su eukariotine DNR ir sudaro labai tvirtus (galbūt kovalentinius) kompleksus tarp branduolio baltymų ir DNR. Nustatyta, kad Erlicho ascito tvirtuose DNR-baltymų kompleksuose yra baltymas C1D, baltymai, pasižymintys fosfataziniu ir kinaziniu aktyvumais, kai kurie proteazių slopikliai ir kiti, dar neištirti baltymai. Nepaisant intensyvių tyrinėjimų, eukariotinių ląstelių tvirti DNR-baltymų kompleksai vis dar lieka menkai aprašyti ir yra objektas tolimesniems tyrimams. Augalų TBP-DNR kompleksai kol kas buvo tyrinėti labai mažai. Šiame darbe charakterizuojami miežių Hordeum vulgare tvirti DNR-baltymų kompleksai. Mes tyrėme TBP-DNR kompleksus iš miežių skirtingų ūglių organų ir skirtingų vystymosi stadijų ląstelių: lapų, šaknų, koleoptilės. Norint ištirti tokių nukleoproteidų funkcijas, svarbu charakterizuoti individualius komplekso komponentus: polipeptidus ir DNR. Taigi, išskyrėme tvirtai su DNR sąveikaujančius baltymus iš miežių skirtingos diferenciacijos bei skirtingo amžiaus ląstelių: pirminių lapelių, šaknų, koleoptilės ir juos charakterizavome. Taip pat išskyrėme ir charakterizavome DNR fragmentus iš miežių pirminių lapelių bei vandeninės brandos ir pieninės brandos grūdų TBP-DNR kompleksų. Parodėme, kad miežių TBP baltymai yra 15-160 kDa, dauguma baltymų yra rūgštiniai. Kai kurie iš miežių TBP baltymų (10, 25, 38, 40 ir 55 kDa) pasižymi fosfataziniu, galbūt, Ser/Thr aktyvumu. Nustatėme, kad tam... [toliau žr. visą tekstą] / Despite a great deal of research, the functional significance of tightly bound DNA-protein complexes is not yet clear, therefore these complexes are perfect object for pioneering research. Very little is known about plant TBP-DNA complexes. In this work we investigated barley TBP-DNA complexes from different organs (first leaves, roots and coleoptiles) at different developmental stages. We characterized individual components of tightly bound DNA-proteins complexes: polypeptides (TBP) and DNA. We isolated and characterized TBP proteins from barley first leaves, roots and coleoptiles of different age and differentiation stage. Also we isolated and characterized the DNA fragments from barley first leaves and water ripe and milky ripe grain TBP-DNA complexes. We demonstrated that in different developmental stages of coleoptiles, first leaves and roots TBP-DNA complexes were identified as a group of 15-160 kDa proteins, most of TBPs are acidic. Some of barley TBPs (10, 25, 38, 40 and 55 kDa) exhibit phosphatase, maybe Ser/Thr activity. We have identified also that some of TBPs tyrosines were phosphorylated, this modification depends on organ and developmental stage. Identified barley TBPs were involved in fundamental genetic processes, as well as in chromatin rearrangement and regulation processes. Nuclear matrix proteins, enzymes, transcription factors, serpins, immunophilins, and transposon polypeptides were identified among TBPs. We demonstrated that expression of TBPs depends... [to full text]
27

Nuclear Organization in Breast Cancer: A Dissertation

Dobson, Jason R. 04 April 2013 (has links)
The nuclear matrix (NM) is a fibrogranular network of ribonucleoproteins upon which transcriptional complexes and regulatory genomic sequences are organized. A hallmark of cancer is the disorganization of nuclear architecture; however, the extent to which the NM is involved in malignancy is not well studied. The RUNX1 and RUNX2 proteins form complexes within the NM to promote hematopoiesis and osteoblastogenesis, respectively at the transcriptional level. RUNX1 and RUNX2 are both expressed in breast cancer cells (BrCCs); however, their genome-wide BrCC functions are unknown. RUNX1 and RUNX2 activate many tumor suppressor pathways in blood and bone lineages, respectively, including attenuation of protein synthesis and cell growth via suppression of ribosomal RNA (rRNA) transcription, which appears contrary to Runx-expression in highly proliferative BrCCs. To define roles for RUNX1 and RUNX2 in BrCC phenotype, we examined the involvement of RUNX1 and RUNX2 in rRNA transcription and generated a genome-wide model for RUNX1 and RUNX2-binding and transcriptional regulation. To validate gene expression patterns identified in our screen, we developed a Real-Time qPCR primer design program, which allows rapid, high-throughput design of primer pairs (FoxPrimer). In BrCCs, RUNX1 and RUNX2 regulate genes that promote invasiveness and do not affect rRNA transcription, protein synthesis, or cell growth. We have characterized in vitro functions of Runx proteins in BrCCs; however, the relationships between Runx expression and diagnostic/prognostic markers of breast cancer (BrCa) in patients are not well studied. Immunohistochemical detection of RUNX1 and RUNX2 in BrCa tissue microarrays reveals RUNX1 expression is associated with early, smaller tumors that are ER+ (estrogen receptor), HER2+, p53-, and correlated with androgen receptor (AR) expression; RUNX2 expression is associated with late-stage, larger tumors that are HER2+. These results show that the functions and expression patterns of NM-associated RUNX1 and RUNX2 are context-sensitive, which suggests potential disease-specific roles. Two functionally disparate genomic sequence types bind to the NM: matrix associated regions (MARs) are functionally associated with transcriptional repression and scaffold associated regions (SARs) are functionally associated with actively expressed genes. It is unknown whether malignant nuclear disorganization affects the functions of MARs/SARs in BrCC. We have refined a method to isolate nuclear matrix associated DNA (NM-DNA) from a structurally preserved NM and applied this protocol to normal mammary epithelial cells and BrCCs. To define transcriptional functions for NM-DNA, we developed a computational algorithm (PeaksToGenes), which statistically tests the associations of experimentally-defined NM-DNA regions and ChIP-seq-defined positional enrichment of several histone marks with transcriptome-wide gene expression data. In normal mammary epithelial cells, NM-DNA is enriched in both MARs and SARs, and the positional enrichment patterns of MARs and SARs are strongly associated with gene expression patterns, suggesting functional roles. In contrast, the BrCCs are significantly enriched in the silencing mark H3K27me3, and the NM-DNA is enriched in MARs and depleted of SARs. The MARs/SARs in the BrCCs are only weakly associated with gene expression patterns, suggesting that loss of normal DNA-matrix associations accompanies the disease state. Our results show that structural preservation of the in situ NM allows isolation of both MARs and SARs, and further demonstrate that in a disorganized, cancerous nucleus, normal transcriptional functions of NM-DNA are disrupted. Our studies on nuclear organization in BrCC, show that the disorganized phenotype of the cancer cell nucleus is accompanied by deregulated transcriptional functions of two constituents of the NM. These results reinforce the role of the NM as an important structure-function component of gene expression regulation.
28

Nmp4 restricts bone marrow osteoprogenitors and parathyroid hormone induced bone formation in healthy and estrogen depleted female mice

Childress, Paul Jeffrey 12 1900 (has links)
We have shown that nuclear matrix protein 4 (Nmp4) attenuates the response to intermittent parathyroid hormone (PTH) in healthy and ovariectomized (OVX) female mice using a global knockout of the Nmp4 gene. Additionally, these mice have increased bone marrow osteoprogenitors and CD8+ T-cells which support osteoblast differentiation. The animals were not protected from bone loss following OVX, but retained the hypersensitivity seen in the intact mice. Mesenchymal stem/progenitor cells (osteoprogenitors) demonstrated increased growth rate in culture and showed more robust differentiation into mineralizing bone cells. Chromosome precipitation followed by next generation sequencing and bioinformatics analysis characterized Nmp4 as a negative regulator of synthetic processes and suggested the IGF1/Akt and BMP2/Smad biochemical pathways which are likely targets for Nmp4 regulation. We have experimentally verified these pathways in immortalized bone marrow mesenchymal cells from wild type and Nmp4-KO mice. Disabling Nmp4 in estrogen replete or depleted mice confers an enhanced bone formation from intermittent parathyroid hormone.
29

XIST and CoT-1 Repeat RNAs are Integral Components of a Complex Nuclear Scaffold Required to Maintain SAF-A and Modify Chromosome Architecture: A Dissertation

Kolpa, Heather J. 08 April 2016 (has links)
XIST RNA established the precedent for a noncoding RNA that stably associates with and regulates chromatin, however it remains poorly understood how such RNAs structurally associate with the interphase chromosome territory. I demonstrate that transgenic XIST RNA localizes in cis to an autosome as it does to the inactive X chromosome, hence the RNA recognizes a structure common to all chromosomes. I reassess the prevalent thinking in the field that a single protein, Scaffold Attachment Factor-A (SAF-A/hnRNP U), provides a single molecule bridge required to directly tether the RNA to DNA. In an extensive series of experiments in multiple cell types, I examine the effects of SAF-A depletion or different SAF-A mutations on XIST RNA localization, and I force XIST RNA retention at mitosis to examine the effect on SAF-A. I find that SAF-A is not required to localize XIST RNA but is one of multiple proteins involved, some of which frequently become lost or compromised in cancer. I additionally examine SAF-A’s potential role localizing repeat-rich CoT-1 RNA, a class of abundant RNAs that we show tightly and stably localize to euchromatic interphase chromosome territories, but release upon disruption of the nuclear scaffold. Overall, findings suggest that instead of “tethering” chromosomal RNAs to the scaffold, SAF-A is one component of a multi-component matrix/scaffold supporting interphase nuclear architecture. Results indicate that Cot-1 and XIST RNAs form integral components of this scaffold and are required to maintain the chromosomal association of SAF-A, substantially advancing understanding of how chromatin-associated RNAs contribute to nuclear structure.
30

[en] CONSTRAINING MAJORANA CP PHASE IN PRECISION ERA OF COSMOLOGY AND DOUBLE BETA DECAY EXPERIMENT / [pt] VINCULANDO A FASE DE VIOLAÇÃO DE CP DE NEUTRINOS DE MAJORANA NA ERA DE PRECISÃO DA COSMOLOGIA E DOS EXPERIMENTOS DE DUPLO DECAIMENTO BETA

04 November 2021 (has links)
[pt] Atualmente podemos determinar com grande precisão os parâmetros das massas e misturas dos neutrinos. Porém, mesmo que no futuro as incertezas sobres as medidas destes parâmetros sejam reduzidas considerablemente, talvez algumas questões ainda continuem em aberto, como por exemplo, o valor absoluto da massa dos neutrinos, a hierarquia de massa e também determinar se os neutrinos são de Majorana ou Dirac, e se forem de Majorana, então quais seriam os valores das fases de CP? Nesta tese, nós abordamos parte destas questões estudando a detetabilidade da fase CP de Majorana através das medidas de massa dos neutrinos, que são extraídas de experimentos de decaimento beta, duplo decaimento beta sem neutrinos e observações cosmológicas. Para quantificar a sensibilidade dos experimentos à fase de Majorana, além de usar os gráficos convencionais das regiões permitidas, usamos a função de exclusão, definida como uma fração no espaço de parâmentros CP, que é excluída quando um conjunto de parâmetros de entrada é fornecido. A sensibilidade dos experimentos é considerada quando variamos as incertezas desde o valor mais pessimista até o valor mais optimista e também incluímos o erro experimental devido à matriz de elementos nucleares. Com esta análise, encontramos que a fase de Majorana, denotada como a21, pode ser restringida ao ser excluído o espaço de parâmentros entre um 10 por cento e até 50 por cento, com um nível de confiança de 3o, isto se consideramos que a massa do neutino mais leve é 0.1eV. Também são tratados aspectos característicos da sensibilidade à fase a21, como por exemplo, a dependência à outra fase de Majorana a31. Para finalizar, nós estudamos o caso de se na atualidade, a incerteza do elemento de matriz nuclear pode ser limitado usando as medidas dos mesmos experimentos. / [en] Nowdays we are in a precision epoch where is possible to get accurately the parameters that involve the neutrino physics, however, even that in the future the uncertainties on those parameters will decrease enormously, perhaps still will continue some open question, for instance, what is the absolute mass of neutrinos? What is the hierarchy of the masses? Are the neutrinos Majorana or Dirac? And if they were Majorana, what would be the value of the CP phases? In this work, we studying the detectability of the CP phase through experiments of neutrino beta decay, neutrinoless double beta decay and cosmology. In order to quantify the sensitivity to the Majorana phase we use the CP exlusion fraction, it is a fraction of region of the CP phase, that is excluded for a given set of assumed input parameters. The experiments sensitivity is account when it is varied since the pessimistic to optimistic one, assumptions of the experimental erros, the uncertainty of nuclear matrix elements and all the scenarios are considering with the Normal and Inverted hierarchies. We find that a Majorana phase, the called a21 can be constrained strongly by excluded 10 − 50 per cent of phase space at 3o CL for the lowest neutrino mass of 0.1 eV. The characteristic features of the sensitivity to a21, such as dependences on the other phase a31 are addressed. We also arise the question of whether the uncertainties of nuclear matrix elements could be constrined be consistancy of such measurements.

Page generated in 0.057 seconds