• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calculation of the fission q-value and spatial energy deposition in the safari-1 nuclear reactor

Jurbandam, Linina January 2018 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science, Johannesburg 2018 / The calculation of reactor-specific fission Q-values is important for the safety analyses of nuclear reactors. The recoverable energy from the fission Q-value is used to normalise reactor quantities to the total power of the reactor. In this work, a detailed recoverable energy from fission Q-value and spatial heat deposition calculations are presented for the SAFARI-1 nuclear reactor. The fission Q-value is composed of the energy released in a fission event by fission products, neutrons, prompt and delayed gamma rays, beta particles and neutrinos. The energy released by neutrinos is not recoverable; however, part of it is recovered by the gamma and beta radiation from the decay of activated materials. We present two methods to calculate the recoverable energy released per fission. The first one uses the Monte Carlo N-Particle (MCNP5) code. MCNP is a probabilistic transport code that has the capability of calculating most of the heating contributions due to particle interactions with matter. The second method uses the Evaluated Nuclear Data File, ENDF/B-VII and ENDF/B-VII.1 data libraries. The ENDF data libraries contains the information required to calculate all the fission Q-value components, excepttheenergyreleasedfromradiativecapture, sincethisquantity depends on the reactor materials. To calculate this, we use the radiative capture reaction rate in MCNP5 and the binding energy of the product of the activation. We obtained a final Q-value of 200.8±0.6 MeV/fission for SAFARI-1. Using the fission Q-value result, we obtained the spatial heat distribution for SAFARI-1 by ii calculating the heating rates of the Q-value components. It was established that 97% of the heat produced is deposited in the fuel and 3% is deposited in the surrounding region of the reactor. / XL2019
2

Analysis of the mechanical response of LMFBR fuel clads subjected to in-service property variations

Subbaraman, Ganesan 08 July 2010 (has links)
Inservice property degradation is known to occur in fuel clads of reactors systems currently in operation and under design_ Irradiation, corrosion, diffusion induced mass transfer, and a host of mechanical influences constitute the complex environmental variables responsible for the degradation. The degradation could occur in the bulk of the clad or through its thickness depending on the component of the environment and the reactor operating history. Synergistic influences of more than one component of the environment must also be considered. From the mechanics viewpoint, the degraded alloy is a material with nonuniform properties. Thus, the basic stress-strain relations require modifications which are functions of the reactor operating history. The nature of the balance equations of stress equilibrium changes, especially if the degradation occurs through the thickness of the material. Prescription of the complete stress-strain relationship is required for an elastic-plastic type of analysis at the beginning of each new time step in modeling the performance of the material. Knowledge of the metallurgical and mechanical nature of the degraded alloy and the spatial variation of the properties which result is a prerequisite for the modeling. Evidence from available literature is presented to illustrate this problem. The study involves the degradation of the 316 type stainless steel considered for use in Liquid Metal Fast Breeder Reactors where sodium is used as the coolant. Nonuniform changes in properties of the steel have been found to occur due to the thermal, thermochemical, and irradiation environment to which it is exposed. Variations in imparity concentrations (such as carbon in the steel) of several orders of magnitude compared to the original values have been observed under controlled sodium exposures. At temperatures relevant to the reactor system migration of impurities by diffusion, compound formations and carburization/decarburization behavior have been observed to occur. Mechanical property measurements such as tensile and yield strengths made under these conditions indicate that thermal and thermochemical influences can result in variations in the above properties quite different from the original material. Modified formulations of the elastic and elastic-plastic analysis of the degraded fuel-clad are presented in two dimensions. The elastic and plastic parameters relating to the properties of the degraded material are represented by spatially varying functions as opposed to being treated as constants which is the conventional case. The changes in the mathematical nature of the constitutive equations are demonstrated by sample illustrations and solutions involving continuous changes in the elastic moduli through-the-thickness of the clad. Recommendations for the establishment of improved Reactor Research Development Standards are made based on the studies. / Ph. D.
3

Irradiation effects on the deformation of oxide dispersion strengthened steels

Grieveson, Eleanor M. January 2015 (has links)
This study concerns four high performance structural alloys designed to withstand the extreme temperature and irradiation environment inside fusion and fission fast breeder reactors: two Reduced Activation Ferritic Martensitic (RAFM) steels (Fe-14wt&percnt;Cr and a European standard alloy EUROFER97) and two equivalent Oxide Dispersion Strengthened (ODS) steels (Fe-14wt&percnt;Cr ODS (CEA ODS) and EUROFER ODS). Neutron irradiation of the samples was impractical due to timescale and specific handling requirements for radioactive samples. Instead, ion implantation was used to simulate the helium and damage of neutron irradiation. Samples of each alloy were subjected to a range of ion implantations: 75appm He, 2000appm He, 2000appm He + 4.5dpa Fe and 2000appm Ne. The matrix of four materials and five implantation conditions was analysed using the following experimental techniques: nanohardness indentation, Vickers hardness testing, micropillar compression, microcantilever bending, transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX). These techniques were used to compare the properties of the unimplanted materials and their response to implantation. Yield stress (&sigma;<sub>y</sub>) was comparable across hardness testing and microcantilever bending, and consistently showed &sigma;<sub>y</sub> Fe-14wt&percnt;Cr &LT; EUROFER &LT; EUROFER ODS &LT; CEA ODS. When subject to helium implantation, 75appm He caused insignificant changes in &sigma;y while 2000appm He increased &sigma;<sub>y</sub> in all materials. This increase was most significant in Fe-14wt&percnt;Cr due to its low grain boundary density and lack of oxide/carbide particles. The particle dispersions in the other materials act as helium traps, preventing the formation of TEM visible bubbles and reducing the hardening effects of the helium. Across all results it becomes clear that, although not to the degree of the ODS materials, EUROFER is more radiation resistant than Fe-14wt&percnt;Cr. It therefore appears that it is the presence of a complex microstructure including small grains and a distribution of oxide or carbide particles, rather than the specific inclusion of oxide nanoparticles, that provides RAFM steels with superior irradiation resistance properties.
4

Corrosion fatigue in nickel base alloys for nuclear steam generator applications

Ballinger, Ronald George, 1945- January 1982 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Includes bibliographical references. / by Ronald George Ballinger. / Sc.D.
5

Effect of chlorinating agents on purity of Zirconium tetrachloride produced from Zirconium tetrafluoride

Makhofane, Milton Molahlegi 06 1900 (has links)
Zirconium tetrachloride (ZrF4) is extensively used in the manufacturing of zirconium metal. The concept of producing zirconium tetrafluoride from dissociated zircon and ammonium bifluoride is well established at the South African Nuclear Energy Corporation (Necsa) State Owned Company (SOC) Limited. Zirconium and hafnium are always found in the same minerals. In nuclear application zirconium is used for structural construction and as a cladding material for fuel, because of the low thermal neutron absorption, while hafnium is used as control rod in nuclear reactor, because of the high thermal neutron absorption. The methods of separating hafnium from zirconium prefer the use of ZrCl4 than ZrF4. This is because of the high solubility in both aqueous solutions and organic solvents and low sublimation temperature of ZrCl4, while ZrF4 is almost insoluble in organic solvent and has a high sublimation temperature. Thermodynamic evaluations showed that chlorinating ZrF4 with either CaCl2, KCl, LiCl or NaCl respectively was not favourable, while chlorinating ZrF4 with either BeCl2 or MgCl2 was favourable. But due to cost consideration chlorinating ZrF4 with BeCl2 was not investigated. A thermogravimetric apparatus was used to investigate the isothermal and the non-isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2. The thermogravimetric apparatus revealed that chlorination of ZrF4 commence at temperature above 350°C. Isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2 was investigated at temperatures of 400, 450, 480, 500°C. The reaction progressed towards completion prematurely before the isothermal temperatures were reached, due to a low heating rate of 20 °C/minutes was used to heat up the reaction mixture to the desired isothermal temperatures. As a result, the isothermal kinetics could not be determined. Heating rates of 5, 10, 15 and 20 °C/minutes were used to investigate the non-isothermal kinetics. The apparent activation energy of chlorinating ZrF4 with MgCl2 varied significantly when the non-isothermal kinetics was investigated. The variation was due to changes in the reaction mechanism. As a result, rate law of chlorinating ZrF4 with MgCl2 could not be determined due to variation of the apparent activation energy. Crude ZrF4 prepared at Necsa SOC ltd. was chlorinated with MgCl2, a mixture of MgCl2 and KCl, a mixture of MgCl2 and LiCl, and a mixture of MgCl2 and NaCl respectively. Chlorination of the crude ZrF4 was conducted at temperatures of 400, 450 and 500°C respectively. The aim of chlorinating the crude ZrF4 was to investigating the effect of the chlorinating on the purity of the produced ZrCl4. A batch reactor was used in this study. The reactor was divided into two sections, namely the reaction zone and the condensation zone. The diameter of the condensation zone was larger than that of the reaction zone. Reactants were placed into the reaction zone and the products were collected at the reaction zone and the condensation zone. Samples were collected from these products and analysed using for X-Ray Diffraction analysis (XRD) and Inductive Coupled Plasma Optical Emissions Spectroscopy (ICP-OES). XRD was used to identify the compounds that were present in the products and ICP-OES was used to determine the concentration of the elements that were present in the products. The analysis of the results obtained showed that the highest recovery of zirconium in the products collected from the condensation zone, the sublimed products, was achieved by chlorinating ZrF4 with MgCl2 at 500°C. About 80% was recovered. About 96% of the concentration of the impurities in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and LiCl at 450°C. About 36% of hafnium in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and NaCl at 400°C. / Chemical Engineering / M.Tech. (Chemical Engineering)
6

Effect of chlorinating agents on purity of Zirconium tetrachloride produced from Zirconium tetrafluoride

Makhofane, Milton Molahlegi 06 1900 (has links)
Zirconium tetrachloride (ZrF4) is extensively used in the manufacturing of zirconium metal. The concept of producing zirconium tetrafluoride from dissociated zircon and ammonium bifluoride is well established at the South African Nuclear Energy Corporation (Necsa) State Owned Company (SOC) Limited. Zirconium and hafnium are always found in the same minerals. In nuclear application zirconium is used for structural construction and as a cladding material for fuel, because of the low thermal neutron absorption, while hafnium is used as control rod in nuclear reactor, because of the high thermal neutron absorption. The methods of separating hafnium from zirconium prefer the use of ZrCl4 than ZrF4. This is because of the high solubility in both aqueous solutions and organic solvents and low sublimation temperature of ZrCl4, while ZrF4 is almost insoluble in organic solvent and has a high sublimation temperature. Thermodynamic evaluations showed that chlorinating ZrF4 with either CaCl2, KCl, LiCl or NaCl respectively was not favourable, while chlorinating ZrF4 with either BeCl2 or MgCl2 was favourable. But due to cost consideration chlorinating ZrF4 with BeCl2 was not investigated. A thermogravimetric apparatus was used to investigate the isothermal and the non-isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2. The thermogravimetric apparatus revealed that chlorination of ZrF4 commence at temperature above 350°C. Isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2 was investigated at temperatures of 400, 450, 480, 500°C. The reaction progressed towards completion prematurely before the isothermal temperatures were reached, due to a low heating rate of 20 °C/minutes was used to heat up the reaction mixture to the desired isothermal temperatures. As a result, the isothermal kinetics could not be determined. Heating rates of 5, 10, 15 and 20 °C/minutes were used to investigate the non-isothermal kinetics. The apparent activation energy of chlorinating ZrF4 with MgCl2 varied significantly when the non-isothermal kinetics was investigated. The variation was due to changes in the reaction mechanism. As a result, rate law of chlorinating ZrF4 with MgCl2 could not be determined due to variation of the apparent activation energy. Crude ZrF4 prepared at Necsa SOC ltd. was chlorinated with MgCl2, a mixture of MgCl2 and KCl, a mixture of MgCl2 and LiCl, and a mixture of MgCl2 and NaCl respectively. Chlorination of the crude ZrF4 was conducted at temperatures of 400, 450 and 500°C respectively. The aim of chlorinating the crude ZrF4 was to investigating the effect of the chlorinating on the purity of the produced ZrCl4. A batch reactor was used in this study. The reactor was divided into two sections, namely the reaction zone and the condensation zone. The diameter of the condensation zone was larger than that of the reaction zone. Reactants were placed into the reaction zone and the products were collected at the reaction zone and the condensation zone. Samples were collected from these products and analysed using for X-Ray Diffraction analysis (XRD) and Inductive Coupled Plasma Optical Emissions Spectroscopy (ICP-OES). XRD was used to identify the compounds that were present in the products and ICP-OES was used to determine the concentration of the elements that were present in the products. The analysis of the results obtained showed that the highest recovery of zirconium in the products collected from the condensation zone, the sublimed products, was achieved by chlorinating ZrF4 with MgCl2 at 500°C. About 80% was recovered. About 96% of the concentration of the impurities in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and LiCl at 450°C. About 36% of hafnium in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and NaCl at 400°C. / Chemical Engineering / M.Tech. (Chemical Engineering)

Page generated in 0.0843 seconds