• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sublimation/deSublimation separation of ZrF4 and HfF4

Postma, Jakkie January 2018 (has links)
This dissertation details research aimed at the separation of Zr and Hf in the tetrafluoride form. Separation of ZrF4 and HfF4 was achieved using sublimation followed by desublimation. The separation involves the sublimation of the tetrafluorides in an inert atmosphere under controlled parameters. The sublimed mass (700 C to 800 C) diffuses into nitrogen which then flows across a water-cooled desublimer (annulus) with the aim of desubliming the one metal fluoride in preference to the other. This implies that separation was achieved in both the sublimer and the desublimer, due to differences in both the sublimation and desublimation rates. The aim was for the sublimer residue to be Hf-rich and the desublimer content to be Zr-rich. The Zr/Hf content was determined by means of ICP-OES analysis. It must be noted that the work reported in this thesis is based on only a first sublimation step. The reason for this is that the equipment used was on laboratory scale and that the mass collected from the desublimer was not sufficient to allow a second or third step to be carried out. Little information was available in the literature on the sublimation separation of Zr and Hf, especially in the fluoride form, most of it being sublimation under vacuum conditions. On an industrial scale, only vacuum sublimation of ZrF4 has been introduced into the industry, and no information was found for sublimation of ZrF4 in an inert atmosphere on an industrial scale. There was also limited information on the sublimation rate of ZrF4 or HfF4 in an inert atmosphere. In the process described in this dissertation, optimal temperature selection is crucial since low temperatures result in a low sublimation rate, and high temperatures not only increase the level of impurities in the sublimed product, but also increase the cost of construction material and energy consumption. The aim was to determine the experimental conditions, i.e. sublimation time, temperature and position on the desublimer, which will provide optimal separation conditions. These conditions must, however, be compared with the operating cost, as this will be higher at a higher temperature and for longer sublimation runs. / Dissertation (MEng)--University of Pretoria, 2018. / Chemical Engineering / MEng / Unrestricted
2

Effect of chlorinating agents on purity of Zirconium tetrachloride produced from Zirconium tetrafluoride

Makhofane, Milton Molahlegi 06 1900 (has links)
Zirconium tetrachloride (ZrF4) is extensively used in the manufacturing of zirconium metal. The concept of producing zirconium tetrafluoride from dissociated zircon and ammonium bifluoride is well established at the South African Nuclear Energy Corporation (Necsa) State Owned Company (SOC) Limited. Zirconium and hafnium are always found in the same minerals. In nuclear application zirconium is used for structural construction and as a cladding material for fuel, because of the low thermal neutron absorption, while hafnium is used as control rod in nuclear reactor, because of the high thermal neutron absorption. The methods of separating hafnium from zirconium prefer the use of ZrCl4 than ZrF4. This is because of the high solubility in both aqueous solutions and organic solvents and low sublimation temperature of ZrCl4, while ZrF4 is almost insoluble in organic solvent and has a high sublimation temperature. Thermodynamic evaluations showed that chlorinating ZrF4 with either CaCl2, KCl, LiCl or NaCl respectively was not favourable, while chlorinating ZrF4 with either BeCl2 or MgCl2 was favourable. But due to cost consideration chlorinating ZrF4 with BeCl2 was not investigated. A thermogravimetric apparatus was used to investigate the isothermal and the non-isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2. The thermogravimetric apparatus revealed that chlorination of ZrF4 commence at temperature above 350°C. Isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2 was investigated at temperatures of 400, 450, 480, 500°C. The reaction progressed towards completion prematurely before the isothermal temperatures were reached, due to a low heating rate of 20 °C/minutes was used to heat up the reaction mixture to the desired isothermal temperatures. As a result, the isothermal kinetics could not be determined. Heating rates of 5, 10, 15 and 20 °C/minutes were used to investigate the non-isothermal kinetics. The apparent activation energy of chlorinating ZrF4 with MgCl2 varied significantly when the non-isothermal kinetics was investigated. The variation was due to changes in the reaction mechanism. As a result, rate law of chlorinating ZrF4 with MgCl2 could not be determined due to variation of the apparent activation energy. Crude ZrF4 prepared at Necsa SOC ltd. was chlorinated with MgCl2, a mixture of MgCl2 and KCl, a mixture of MgCl2 and LiCl, and a mixture of MgCl2 and NaCl respectively. Chlorination of the crude ZrF4 was conducted at temperatures of 400, 450 and 500°C respectively. The aim of chlorinating the crude ZrF4 was to investigating the effect of the chlorinating on the purity of the produced ZrCl4. A batch reactor was used in this study. The reactor was divided into two sections, namely the reaction zone and the condensation zone. The diameter of the condensation zone was larger than that of the reaction zone. Reactants were placed into the reaction zone and the products were collected at the reaction zone and the condensation zone. Samples were collected from these products and analysed using for X-Ray Diffraction analysis (XRD) and Inductive Coupled Plasma Optical Emissions Spectroscopy (ICP-OES). XRD was used to identify the compounds that were present in the products and ICP-OES was used to determine the concentration of the elements that were present in the products. The analysis of the results obtained showed that the highest recovery of zirconium in the products collected from the condensation zone, the sublimed products, was achieved by chlorinating ZrF4 with MgCl2 at 500°C. About 80% was recovered. About 96% of the concentration of the impurities in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and LiCl at 450°C. About 36% of hafnium in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and NaCl at 400°C. / Chemical Engineering / M.Tech. (Chemical Engineering)
3

Effect of chlorinating agents on purity of Zirconium tetrachloride produced from Zirconium tetrafluoride

Makhofane, Milton Molahlegi 06 1900 (has links)
Zirconium tetrachloride (ZrF4) is extensively used in the manufacturing of zirconium metal. The concept of producing zirconium tetrafluoride from dissociated zircon and ammonium bifluoride is well established at the South African Nuclear Energy Corporation (Necsa) State Owned Company (SOC) Limited. Zirconium and hafnium are always found in the same minerals. In nuclear application zirconium is used for structural construction and as a cladding material for fuel, because of the low thermal neutron absorption, while hafnium is used as control rod in nuclear reactor, because of the high thermal neutron absorption. The methods of separating hafnium from zirconium prefer the use of ZrCl4 than ZrF4. This is because of the high solubility in both aqueous solutions and organic solvents and low sublimation temperature of ZrCl4, while ZrF4 is almost insoluble in organic solvent and has a high sublimation temperature. Thermodynamic evaluations showed that chlorinating ZrF4 with either CaCl2, KCl, LiCl or NaCl respectively was not favourable, while chlorinating ZrF4 with either BeCl2 or MgCl2 was favourable. But due to cost consideration chlorinating ZrF4 with BeCl2 was not investigated. A thermogravimetric apparatus was used to investigate the isothermal and the non-isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2. The thermogravimetric apparatus revealed that chlorination of ZrF4 commence at temperature above 350°C. Isothermal kinetics of chlorinating analytical grade ZrF4 with MgCl2 was investigated at temperatures of 400, 450, 480, 500°C. The reaction progressed towards completion prematurely before the isothermal temperatures were reached, due to a low heating rate of 20 °C/minutes was used to heat up the reaction mixture to the desired isothermal temperatures. As a result, the isothermal kinetics could not be determined. Heating rates of 5, 10, 15 and 20 °C/minutes were used to investigate the non-isothermal kinetics. The apparent activation energy of chlorinating ZrF4 with MgCl2 varied significantly when the non-isothermal kinetics was investigated. The variation was due to changes in the reaction mechanism. As a result, rate law of chlorinating ZrF4 with MgCl2 could not be determined due to variation of the apparent activation energy. Crude ZrF4 prepared at Necsa SOC ltd. was chlorinated with MgCl2, a mixture of MgCl2 and KCl, a mixture of MgCl2 and LiCl, and a mixture of MgCl2 and NaCl respectively. Chlorination of the crude ZrF4 was conducted at temperatures of 400, 450 and 500°C respectively. The aim of chlorinating the crude ZrF4 was to investigating the effect of the chlorinating on the purity of the produced ZrCl4. A batch reactor was used in this study. The reactor was divided into two sections, namely the reaction zone and the condensation zone. The diameter of the condensation zone was larger than that of the reaction zone. Reactants were placed into the reaction zone and the products were collected at the reaction zone and the condensation zone. Samples were collected from these products and analysed using for X-Ray Diffraction analysis (XRD) and Inductive Coupled Plasma Optical Emissions Spectroscopy (ICP-OES). XRD was used to identify the compounds that were present in the products and ICP-OES was used to determine the concentration of the elements that were present in the products. The analysis of the results obtained showed that the highest recovery of zirconium in the products collected from the condensation zone, the sublimed products, was achieved by chlorinating ZrF4 with MgCl2 at 500°C. About 80% was recovered. About 96% of the concentration of the impurities in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and LiCl at 450°C. About 36% of hafnium in the sublimed products was reduced when ZrF4 was chlorinated with a mixture of MgCl2 and NaCl at 400°C. / Chemical Engineering / M.Tech. (Chemical Engineering)

Page generated in 0.059 seconds