Spelling suggestions: "subject:"nucleokapsidprotein"" "subject:"nukleokapsidprotein""
1 |
Characterization of Expression of Puumala Virus Nucleocapsid Protein in Transgenic PlantsKhattak, Shahryar, Darai, Gholamreza, Süle, Sandor, Rösen-Wolff, Angela 20 March 2014 (has links) (PDF)
Transgenic plants expressing a foreign gene are a suitable system for the production of relevant immunogens in high amounts that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study, the expression of the nucleocapsid (N) protein of hantavirus serotype Puumala in tobacco and potato plants was investigated. Transgenic tobacco and potato plants were generated and established. These transgenic plants expressed the N protein of Puumala virus strain CG-1820. No major differences were observed when the phenotype and growth rates of transgenic plants were compared to those of normal plants. However, it was found that the leaves of transgenic tobacco plants were more slender and the tubers of transgenic potato plants were smaller than those in normal plants. In order to investigate the distribution of the expression of the foreign gene in transgenic plants, the proteins of leaves and roots of the individual transgenic tobacco and potato plants were examined by Western blot analyses. It was found that all transgenic tobacco and potato plants expressed the N protein in the leaves, whereas transgenic potato plants are able to significantly express the viral proteins also in the tubers and roots. The antigens were expressed at a level of 1 ng of protein/5 μg of dried leaves. The hantaviral recombinant N proteins obtained from transgenic tobacco and potato plants were able to elicit specific humoral and mucosal immune responses when administered intraperitoneally or orally to rabbits and mice. The expression of viral proteins in plants has two major advantages compared to other expression systems: firstly, there is no risk of contamination with mammalian viruses or other pathogens, and secondly, the production of high amounts of antigens is cheap and therefore of great economic interest. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
2 |
Characterization of Expression of Puumala Virus Nucleocapsid Protein in Transgenic PlantsKhattak, Shahryar, Darai, Gholamreza, Süle, Sandor, Rösen-Wolff, Angela January 2002 (has links)
Transgenic plants expressing a foreign gene are a suitable system for the production of relevant immunogens in high amounts that can be used for the development of a new generation of vaccines against a variety of infectious diseases. In the present study, the expression of the nucleocapsid (N) protein of hantavirus serotype Puumala in tobacco and potato plants was investigated. Transgenic tobacco and potato plants were generated and established. These transgenic plants expressed the N protein of Puumala virus strain CG-1820. No major differences were observed when the phenotype and growth rates of transgenic plants were compared to those of normal plants. However, it was found that the leaves of transgenic tobacco plants were more slender and the tubers of transgenic potato plants were smaller than those in normal plants. In order to investigate the distribution of the expression of the foreign gene in transgenic plants, the proteins of leaves and roots of the individual transgenic tobacco and potato plants were examined by Western blot analyses. It was found that all transgenic tobacco and potato plants expressed the N protein in the leaves, whereas transgenic potato plants are able to significantly express the viral proteins also in the tubers and roots. The antigens were expressed at a level of 1 ng of protein/5 μg of dried leaves. The hantaviral recombinant N proteins obtained from transgenic tobacco and potato plants were able to elicit specific humoral and mucosal immune responses when administered intraperitoneally or orally to rabbits and mice. The expression of viral proteins in plants has two major advantages compared to other expression systems: firstly, there is no risk of contamination with mammalian viruses or other pathogens, and secondly, the production of high amounts of antigens is cheap and therefore of great economic interest. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
|
Page generated in 0.0326 seconds