• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 74
  • 32
  • 29
  • 24
  • 20
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

Hannaske, Roland 28 April 2016 (has links)
Zwischen 10 und 1000 s nach dem Urknall bildeten sich während der Big Bang Nukleosynthese (BBN) die ersten leichten Elemente aus Protonen und Neutronen. Die primordialen Häufigkeiten dieser Elemente hingen von denWirkungsquerschnitten der beteiligten Kernreaktionen ab. Vergleiche zwischen den Ergebnissen nuklearer Netzwerkrechnungen mit astronomischen Beobachtungen bieten eine einzigartige Möglichkeit, etwas über das Universum zu dieser Zeit zu erfahren. Da es für die p(n,g)d-Reaktion, die eine Schlüsselreaktion der BBN ist, kaum Messungen im relevanten Energiebereich gibt, beruht deren Reaktionsrate in Netzwerkrechnungen auf theoretischen Berechnungen. Darin fließen auch experimentelle Daten der Nukleon-Nukleon-Streuung, des Einfangquerschnitts für thermische Neutronen sowie (nach Anwendung des Prinzips des detaillierten Gleichgewichts) der d(g,n)p-Reaktion mit ein. Diese Reaktion, die Photodissoziation des Deuterons, ist bei BBN-Energien (Tcm = 20–200 keV) ebenfalls kaum vermessen. Die großen experimentelle Unsicherheiten machen Vergleiche mit den präzisen theoretischen Berechnungen schwierig. In den letzten Jahren wurde die d(g,n)p-Reaktion und insbesondere der M1-Anteil des Wirkungsquerschnitts mit quasi-monoenergetischen g-Strahlen aus Laser-Compton-Streuung oder durch Elektrodesintegration untersucht. Üblicherweise verwendete man für Messungen des d(g,n)p-Wirkungsquerschnitts entweder die auf wenige diskrete Energien beschränkte Strahlung des g-Zerfalls oder Bremsstrahlung, für die aber eine genaue Photonenflussbestimmung sowie der Nachweis von einem der Reaktionsprodukte und dessen Energie nötig ist. Da diese Energie im Bereich der BBN relativ gering ist, gab es bisher noch keine absoluten Messung des d(g,n)p-Wirkungsquerschnitts bei Tcm < 5 MeV mit Bremsstrahlung. Das Ziel dieser Dissertation ist eine solche Messung mit einer Unsicherheit von 5 % im für die BBN relevanten Energiebereich und darüber hinaus bis Tcm ~ 2,5 MeV unter Verwendung gepulster Bremsstrahlung an der Strahlungsquelle ELBE. Dieser supraleitende Elektronenbeschleuniger befindet sich am Helmholtz-Zentrum Dresden-Rossendorf und stellte einen Elektronenstrahl hoher Intensität bereit. Die kinetische Elektronenenergie von 5 MeV wurde mit einem Browne-Buechner-Spektrometer präzise gemessen. Die Energieverteilung der in einer Niob-Folie erzeugten Bremsstrahlungsphotonen wurde berechnet. Die Photonenflussbestimmung nutzte die Kernresonanzstreuung an 27Al, das sich mit deuteriertem Polyethylen in einem mehrschichtigen Target befand. Die 27Al-Abregungen wurden mit abgeschirmten, hochreinen Germanium-Detektoren nachgewiesen, deren Effektivität mit GEANT4 simuliert und durch Quellmessungen normiert wurde. Die Messung der Energie der Neutronen aus der d(g,n)p-Reaktion erfolgte mittels deren Flugzeit in Plastikszintillatoren, die an zwei Seiten von Photoelektronenvervielfachern mit hoher Verstärkung ausgelesen wurden. Die Nachweiseffektivität dieser Detektoren wurde in einem eigenen Experiment in den Referenz-Neutronenfeldern der PTB Braunschweig kalibriert. Die Nachweisschwelle lag bei etwa 10 keV kinetischer Neutronenenergie.Wegen der guten Zeitauflösung der Neutronendetektoren und des ELBE-Beschleunigers genügte eine Flugstrecke von nur 1 m. Die Energieauflösung betrug im d(g,n)p-Experiment 1–2 %. Leider gingen viele Neutronen bereits durch Streuung in dem großen Target verloren oder sie wurden erst durch Teile des kompakten Experimentaufbaus in die Detektoren gestreut. Beide Effekte wurden mit Hilfe von FLUKA simuliert um einen Korrekturfaktor zu bestimmen, der aber bei niedrigen Energien relativ groß war. Der d(g,n)p-Wirkungsquerschnitts wurde daher nur im Bereich 0.7 MeV < Tcm < 2.5 MeV bestimmt. Die Ergebnisse stimmen mit anderen Messungen, Daten-Evaluierungen sowie theoretischen Rechnungen überein. Die Gesamtunsicherheit beträgt circa 6.5 % und kommt zu fast gleichen Teilen von den statistischen und systematischen Unsicherheiten. Die statistische Unsicherheit könnte durch eine längere FLUKA Simulation noch von 3–5 % auf 1 % verringert werden. Die systematische Unsicherheit von 4.5 % ist vorrangig auf die Photonenflussbestimmung, die Neutronen-Nachweiseffektivität und die Target-Zusammensetzung zurückzuführen.
72

Investigating and Reducing the Impact of Reaction Rate Uncertainties on 44Ti and 56NiProduction in Shock Driven Nucleosynthesis of Core-Collapse Supernovae

Subedi, Shiv Kumar January 2021 (has links)
No description available.
73

Precise nuclear data of the 14N(p,gamma)15O reaction for solar neutrino predictions

Wagner, Louis 11 April 2019 (has links)
The 14N(p,gamma)15O reaction is the slowest stage of the carbon-nitrogen-oxygen cycle of hydrogen burning and thus determines its reaction rate. Precise knowledge of its rate is required to improve the model of hydrogen burning in our sun. The reaction rate is a necessary ingredient for a possible solution of the solar abundance problem that led to discrepancies between predictions of the solar standard model and helioseismology. The solar 13N and 15O neutrino fluxes are used as independent observables that probe the carbon and nitrogen abundances in the solar core. This could settle the disagreement, if the 14N(p,gamma)15O reaction rate is known with high precision. After a review of several measurements its cross section was revised downward due to a much lower contribution by one particular transition, capture to the ground state in 15O. The evaluated total relative uncertainty is still 7.5%, in part due to an unsatisfactory knowledge of the excitation function over a wide energy range. The present work reports experimentally determined cross sections as astrophysical S-factor data at twelve energies between 0.357 - 1.292 MeV for the strongest transition, capture to the 6.79 MeV excited state in 15O with lower uncertainties than before and at ten energies between 0.479 - 1.202 MeV for the second strongest transition, capture to the ground state in 15O. In addition, an R-matrix fit is performed to estimate the impact of the new data on the astrophysical relevant energy range. The recently suggested slight S-factor enhancement at the Gamow window could not be confirmed and differences to previous measurements at energies around 1 MeV were observed. The present extrapolated zero-energy S-factors are S_6.79(0) = (1.19+-0.10) keV b and S_GS(0) = (0.25+-0.05) keV b and they are within the uncertainties consistent with values recommended by the latest review. / Die 14N(p,gamma)15O Reaktion ist die langsamste Phase im Bethe-Weizsäcker-Zyklus des Wasserstoffbrennens und bestimmt deshalb die Reaktionsrate des gesamten Zyklus. Präzise Werte für die Reaktionsrate sind notwendig um das Wasserstoffbrennen in unserer Sonne besser zu verstehen. Besonders das Problem widersprüchlicher Ergebnisse aus Vorhersagen des aktuellen Sonnenmodells und helioseismologischen Experimenten könnte durch genauer bekannte 14N(p,gamma)15O Reaktionsraten aufgelöst werden. Dafür soll der solare 13N und 15O Neutrinofluss von den beta+-Zerfällen als direkter Informationsträger über die Häufigkeit von Stickstoff und Kohlenstoff im Sonneninneren genutzt werden. Der für die Berechnung der Häufigkeiten benötigte Wirkungsquerschnitt der 14N(p,gamma)15O Reaktion wurde in einer Evaluation verschiedener Messungen reduziert, da der Anteil des direkten Protoneneinfang mit Übergang in den Grundzustand deutlich weniger zum gesamten Wirkungsquerschnitt beiträgt als zuvor angenommen. Die evaluierte relative Gesamtunsicherheit ist mit 7.5% dennoch hoch, was zu einem großen Teil an ungenügendem Wissen über die Anregungsfunktion in einem weiten Energiebereich liegt. In der vorliegenden Arbeit werden experimentell ermittelte Wirkungsquerschnitte in Form von astrophysikalischen S-Faktoren für zwei Übergänge vorgestellt. Für den stärksten Übergang, den Protoneneinfang zum angeregten Zustand bei 6.79 MeV in 15O, wurden zwölf S-Faktoren bei Energien zwischen 0.357 – 1.292 MeV mit geringeren Unsicherheiten als zuvor ermittelt und für den direkten Übergang in den Grundzustand zehn Werte zwischen 0.479 – 1.202 MeV. Außerdem wurde ein R-Matrix Fit durchgeführt um den Einfluss der neuen Daten auf Extrapolationen zum astrophysikalisch relevanten Energiebereich zu prüfen. Die kürzlich vorgeschlagene Erhöhung des S-Faktors im Gamow-Fenster konnte nicht bestätigt werden und es wurden auch Unterschiede zu bisherigen Messungen im Energiebereich um 1 MeV deutlich. Die neuen extrapolierten S-Faktoren sind S679(0) = (1.19±0.10) keV b und SGS(0) = (0.25 ± 0.05) keV b und sie stimmen mit den von der Evaluation empfohlenen Werten im Rahmen ihrer Unsicherheiten überein.
74

Improved nuclear predictions of relevance to the r-process of nucleosynthesis

Samyn, Mathieu 22 January 2004 (has links)
Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished

Page generated in 0.0295 seconds