• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 195
  • 63
  • 22
  • 21
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 458
  • 124
  • 123
  • 114
  • 80
  • 80
  • 78
  • 74
  • 54
  • 53
  • 51
  • 51
  • 49
  • 42
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

DFT study of the electronic structure of neutral, cationic and anionic states of DNA: role of the phosphate backbone.

January 2005 (has links)
Chan Sze-ki. / Thesis submitted in: December 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 73-76). / Abstracts in English and Chinese. / ABSTRACT (English Version) --- p.iii / ABSTRACT (Chinese Version) --- p.iv / ACKNOWLEDGEMENTS --- p.v / TABLE OF CONTENTS --- p.vi / LIST OF TABLES --- p.viii / LIST OF FIGURES --- p.xi / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1. --- Structure of Deoxyribonucleic acid (DNA) / Chapter 1.1.1. --- Configuration and Conformation of Deoxyribonucleic acid (DNA) --- p.1 / Chapter 1.1.2. --- Torsion Angle --- p.2 / Chapter 1.1.3. --- Base Pairing --- p.5 / Chapter 1.2. --- DNA Damage --- p.6 / Chapter 1.3. --- The Objective of this Project --- p.11 / Chapter CHAPTER 2 --- theory and Computational Details / Chapter 2.1. --- Computational Theory / Chapter 2.1.1. --- Density Functional Theory (DFT) --- p.12 / Chapter 2.1.2. --- Closed-shell and Open-shell Determinantal Wavefunctions --- p.13 / Chapter 2.1.3. --- Calculation Method --- p.13 / Chapter 2.1.4. --- Basis Set Details --- p.14 / Chapter 2.2. --- Ionization Potential and Electron Affinity --- p.15 / Chapter 2.3. --- Charge Distribution --- p.16 / Chapter 2.4. --- Molecular Orbital --- p.16 / Chapter 2.5. --- Computation Details in this Project / Chapter 2.5.1. --- Calculation Method --- p.17 / Chapter 2.5.2. --- Studied Model --- p.17 / Chapter CHPATER 3 --- Results and Discussion / Chapter 3.1. --- Neutral State / Chapter 3.1.1. --- Bond Length --- p.19 / Chapter 3.1.2. --- Torsion Angle of DNA backbone --- p.19 / Chapter 3.1.3. --- Sugar Ring Puckering Mode --- p.25 / Chapter 3.1.4. --- Natural Population Analysis (NAP) --- p.28 / Chapter 3.1.5. --- Molecular Orbitals --- p.31 / Chapter 3.2. --- Cationic State / Chapter 3.2.1. --- Ionization Potential --- p.33 / Chapter 3.2.2. --- Bond Length --- p.34 / Chapter 3.2.3. --- Backbone Torsion Angles --- p.38 / Chapter 3.2.4. --- Puckering Mode of Sugar Ring --- p.40 / Chapter 3.2.5. --- Charge Distribution --- p.43 / Chapter 3.2.6. --- Molecular Orbitals --- p.43 / Chapter 3.2.7. --- Summary --- p.47 / Chapter 3.3. --- Anionic State / Chapter 3.3.1. --- Ionization Potential --- p.51 / Chapter 3.3.2. --- Bond Lengths --- p.52 / Chapter 3.3.3. --- Torsion Angles of Backbone --- p.54 / Chapter 3.3.4. --- Sugar Ring Puckering Mode --- p.54 / Chapter 3.3.5. --- Charge Distribution --- p.58 / Chapter 3.3.6. --- Molecular Orbital --- p.63 / Chapter 3.3.7. --- Summary --- p.66 / Chapter CHAPTER 4 --- CONCLUSION AND FUTURE WORK / Chapter 4.1. --- Conclusion --- p.68 / Chapter 4.2. --- Future Work --- p.71 / REFERENCE --- p.73
62

Viral dUTPases recombinant expression, purification, and substrate specificity /

Björnberg, Olof. January 1995 (has links)
Thesis (doctoral)--Lund University, 1995.
63

Viral dUTPases recombinant expression, purification, and substrate specificity /

Björnberg, Olof. January 1995 (has links)
Thesis (doctoral)--Lund University, 1995.
64

Prediction of Post Mortem Interval from Degradation of Endogenous Nucleotides in Human Subjects

Williams, John Burgess 04 1900 (has links)
High Performance Liguid Chromatography was used to measure degradation of nucleotides in human cadavers for the purpose of prediction of post mortem interval. Endogenous nucleotides were extracted from integumentary tissue of six(6) human cadavers using six percent(6%) tricholoacetic acid. Linear regression statistical techniques were used to determine linearity of degradation of various nucleotide pools.
65

Novel macrocycles derived from nucleosides

Munoz, Noelia Calcerrada January 2000 (has links)
No description available.
66

The effects of protein associations on pyrimidine deoxyribonucleotide biosynthesis

McGaughey, Kathleen M. 29 November 2001 (has links)
The faithful replication of DNA depends on the appropriate balance of DNA precursors. From studies conducted in bacteriophage T4, models for deoxyribonucleotide biosynthesis producing pools appropriate for DNA replication have made it possible to understand more complex systems. A portion of that body of evidence supports the concept that deoxyribonucleotide biosynthesis for bacteriophage T4 is carried out by an association of enzymes and other cellular components in a complex called the dNTP synthetase complex. This dissertation explores potential direct protein-protein interactions within this complex for the preparation of pyrimidine deoxyribonucleotides. Direct associations for enzymes involved in pyrimidine deoxyribonucleotide biosynthesis were examined by affinity chromatography. It was determined that there was a significant direct relationship between T4 thymidylate synthase and T4 dCMP deaminase, between T4 dCTPase/dUTPase and T4 dCMP deaminase as well. The interaction between thymidylate synthase and dCMP deaminase was significantly influenced by the presence of dCTP, a positive effector of dCMP deaminase. Furthermore, protein associations changed the kinetic character of pyrimidine deoxyribonucleotide production. T4 dCTPase/dUTPase, a member of the dNTP synthetase complex, significantly alters the kinetic nature of thymidylate synthase by working with thymidylate synthase in a reciprocal relationship. T4 single-stranded DNA binding protein, a member of the replication complex, alters the activity of thymidylate synthase as well. Attempts to isolate a kinetically coupled complex from two or more constituent proteins of the dNTP synthetase complex were frustrated by protein degradation to fragments under 10 kDa in size. Pyrimidine deoxyribonucleotide synthesis is located between the significant energy investment of ribonucleotide reductase and phosphate attachments by kinases to prepare the deoxyribonucleotide molecules for DNA replication. In bacteriophage T4, intermediate reactions are driven by mass action but are modulated by subtleties including direct protein associations and the presence of small molecules that influence enzyme function. Through these and potentially similar controls, pools of deoxyribonucleotides are prepared and delivered in a timely, balanced manner to the DNA replication apparatus. / Graduation date: 2002
67

Exploring structural diversity in nucleoside and nucleic acid drug design

O'Daniel, Peter Ivo. January 2005 (has links)
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2006. / Barefield, E. Kent, Committee Member ; Beckham, Haskell W., Committee Member ; Doyle, Donald F., Committee Member ; Weck, Marcus, Committee Member ; Seley, Katherine L., Committee Chair.
68

Synthesis and characterization of seven thiophosphate analogs of cyclic diguanosine monophosphate

Zhao, Jianwei, January 2009 (has links)
Thesis (Ph. D.)--Rutgers University, 2009. / "Graduate Program in Chemistry and Chemical Biology." Includes bibliographical references.
69

Sequence studies in deoxyribonucleic acid

Ormondt, Hans Van. January 1974 (has links)
Proefschrift--Rijksuniversiteit te Leiden.
70

Finding functions for novel and orphan arabidopsis genes : the EST advantage /

Mylne, Joshua Scott. January 2001 (has links) (PDF)
Thesis (Ph. D.)--University of Queensland, 2002. / Includes bibliographical references.

Page generated in 0.0459 seconds