• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 491
  • 372
  • 311
  • 50
  • 41
  • 21
  • 12
  • 12
  • 11
  • 10
  • 6
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 1429
  • 1429
  • 384
  • 295
  • 284
  • 222
  • 155
  • 152
  • 140
  • 127
  • 124
  • 116
  • 107
  • 93
  • 92
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Numerical simulation of warm discharge in cold fresh water

George, Alabodite M. January 2017 (has links)
Buoyant plumes in cold fresh water are of interest because of the possibility of buoyancy reversal due to the nonlinear relation between temperature and density in water. Thus an initially rising plume may become a fountain. This project aims to mathematically model such plumes and fountains using numerical simulation by the means of a commercial software, Comsol Multiphysics. Both turbulent and lam- inar cases were investigated in different geometries, and with the assumption that density is a quadratic function of temperature. The turbulent flow cases as con- sidered here in this thesis are relevant to practical applications such as industrial discharge in cold lakes: whereas, the laminar flow case relates to laboratory experi- ments which are typically at scales too small for the flow to be turbulent. Previous investigation on warm discharge placed more attention on the biological implications of the spread along the lake bed, and not interested in analysing the dynamics of such flow, which turns out to be our focus. Furthermore, investigations on buoyant plumes that become negatively buoyant at later time (fountain flow) as considered previously, are based on the assumption that density is a linear function of tem- perature: where entrainment always reduces buoyancy. Whereas, the consideration of the temperature of maximum density is crucial and realistic in many practical situations, especially the power station warm discharge. Mixing is then bound to produce a mixture that is denser than both the discharge and the ambient water if receiving water is less than Tm: where this situation differs from plumes with linear mixing properties. Therefore, our focus is to better fathom the behaviour of warm discharge so as to give a detailed description of the flow, and also to observe buoyancy reversal whenever water that is denser than both the discharge and the receiving water is produced. The simulations were carried out for Prandtl number Pr = 7 & 11.4 and over the ranges of Froude number 0.1 ≤ Fr ≤ 5 and Reynolds numbers 50 ≤ Re ≤ 106, with source temperatures that are assumed to be higher than the temperature of maximum density Tm, and the ambient water below the Tm. Our results show some distinct behaviours from those experimental investigations by Bukreev, who also considered warm discharge where water that has temperature above the temperature Tm is initiated into a medium below Tm. The results here also showed some differences from those investigations with the linear dependence relation assumption.
92

[en] MODELING AND NUMERICAL SIMULATION OF CYCLIC LOADING ON ELASTIC-PLASTIC STRUCTURES / [pt] MODELAGEM E SIMULAÇÃO NUMÉRICA DE CARREGAMENTOS CÍCLICOS EM ESTRUTURAS ELASTO-PLÁSTICAS

PAULO PARGA NINA 04 July 2012 (has links)
[pt] O presente trabalho trata de modelagem e simulação numérica de carregamentos cíclicos em estruturas elasto-plásticas. Uma decomposição aditiva do problema contínuo é usada para o desenvolvimento de técnicas por elemento finitos para a aproximação da solução com boas propriedades de estabilidade e que: -consideram a matriz de rigidez constante (exatamente igual á obtida num problema elástico equivalente). Esta matriz de rigidez é montada e triangularizada uma única vez ao longo do processo de solução. -integram as leis de evolução elemento por elemento. A eficiência e utilidade das técnicas numéricas propostas é verificada analisando-se o comportamento cíclico de vasos de pressão e treliças de alumínio AU4G e aço inoxidável 316L. / [en] This work is concerned with the modeling and numerical simulation of cyclic loadings in elastro-plastic structures. Na aditive decomposition of the continuum problem is used to develop stable and robust finite element techniques of solution: -that consider a Constant stiffness matrix (exatly the same obtained in na equivalent elastic problem). This matrix is assembled and composed only once along the process of solution. -in which the integration of the evolution Law is performed element-by-element. The effectiveness and usefullness of the proposed numerical technique is verified by analysing the cyclic behaviour of AU4G aluminium alloy and 316 L stainless steel pressure vessels and trusses.
93

The bending effect in turbulent flame propagation

Nivarti, Girish Venkata January 2017 (has links)
In the present thesis, the sensitivity of flame propagation to the turbulent motion of burning gases is investigated. The long-standing issue of the 'bending effect' is focused upon, which refers to the experimentally-observed inhibition of flame propagation velocity at high intensities of turbulence. Plausible mechanisms for the bending effect are investigated by isolating systematically the effects of turbulence intensity. By providing a novel perspective on this topic, the thesis addresses the fundamental limits of turbulent burning. The investigation employs Direct Numerical Simulation (DNS), which enables the basic conditions of burning to be controlled directly. A parametric DNS dataset is designed and generated by increasing turbulence intensity over five separate simulations. Effects of turbulent motion are isolated in this manner, such that the bending effect is reproduced in the variation of flame propagation velocity recorded. Subsequently, the validity of Damköhler's hypotheses is investigated to ascertain the mechanism of bending. Analysis of the DNS dataset highlights the significance of kinematic flame response in determining turbulent flame propagation. Damköhler's first hypothesis is found to be valid throughout the dataset, suggesting that the bending effect may be a consequence of self-regulation of the flame surface. This contradicts the dominant belief that bending occurs as a result of flame surface disruption by the action of turbulence. Damköhler's second hypothesis is found to be valid in a relatively limited regime within the dataset, its validity governed by flame-induced effects on the prescribed turbulent flow field. Therefore, this thesis presents turbulent flame propagation and the bending effect as emergent from the dynamics of a flame surface that retains its internal thermo-chemical structure. Finally, experimental validation is sought for the proposed mechanisms of bending. Comparisons have been initiated with measurements in the Leeds explosion vessel, based on which the widely accepted mechanism of bending was hypothesized twenty-five years ago. Modifications to the DNS framework warranted by this comparison have aided the development of novel computationally-efficient algorithms. The ongoing work may yield insights into the key mechanism of the bending effect in turbulent flame propagation.
94

Numerical Simulation of Environmental Flow over Urban Landscape for Applications to Renewable Energy

January 2015 (has links)
abstract: Development of renewable energy solutions has become a major interest among environmental organizations and governments around the world due to an increase in energy consumption and global warming. One fast growing renewable energy solution is the application of wind energy in cities. To qualitative and quantitative predict wind turbine performance in urban areas, CFD simulation is performed on real-life urban geometry and wind velocity profiles are evaluated. Two geometries in Arizona is selected in this thesis to demonstrate the influence of building heights; one of the simulation models, ASU campus, is relatively low rise and without significant tall buildings; the other model, the downtown phoenix model, are high-rise and with greater building height difference. The content of this thesis focuses on using RANS computational fluid dynamics approach to simulate wind acceleration phenomenon in two complex geometries, ASU campus and Phoenix downtown model. Additionally, acceleration ratio and locations are predicted, the results are then used to calculate the best location for small wind turbine installments. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2015
95

Modeling of Copper Migration In CdTe Photovoltaic Devices

January 2017 (has links)
abstract: Thin-film modules of all technologies often suffer from performance degradation over time. Some of the performance changes are reversible and some are not, which makes deployment, testing, and energy-yield prediction more challenging. The most commonly alleged causes of instability in CdTe device, such as “migration of Cu,” have been investigated rigorously over the past fifteen years. As all defects, intrinsic or extrinsic, interact with the electrical potential and free carriers so that charged defects may drift in the electric field and changing ionization state with excess free carriers. Such complexity of interactions in CdTe makes understanding of temporal changes in device performance even more challenging. The goal of the work in this dissertation is, thus, to eliminate the ambiguity between the observed performance changes under stress and their physical root cause by enabling a depth of modeling that takes account of diffusion and drift at the atomistic level coupled to the electronic subsystem responsible for a PV device’s function. The 1D Unified Solver, developed as part of this effort, enables us to analyze PV devices at a greater depth. In this dissertation, the implementation of a drift-diffusion model defect migration simulator, development of an implicit reaction scheme for total mass conservation, and a couple of other numerical schemes to improve the overall flexibility and robustness of this coupled Unified Solver is discussed. Preliminary results on Cu (with or without Cl-treatment) annealing simulations in both single-crystal CdTe wafer and poly-crystalline CdTe devices show promising agreement to experimental findings, providing a new perspective in the research of improving doping concentration hence the open-circuit voltage of CdTe technology. Furthermore, on the reliability side, in agreement of previous experimental reports, simulation results suggest possibility of Cu depletion in short-circuited cells stressed at elevated temperature. The developed solver also successfully demonstrated that mobile donor migration can be used to explain solar cell performance changes under different stress conditions. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2017
96

Optimized Vortex Tube Bundle for Large Flow Rate Applications

January 2013 (has links)
abstract: ABSTRACT A vortex tube is a device of a simple structure with no moving parts that can be used to separate a compressed gas into a hot stream and a cold stream. Many studies have been carried out to find the mechanisms of the energy separation in the vortex tube. Recent rapid development in computational fluid dynamics is providing a powerful tool to investigate the complex flow in the vortex tube. However various issues in these numerical simulations remain, such as choosing the most suitable turbulent model, as well as the lack of systematic comparative analysis. LES model for the vortex tube simulation is hardly used in the present literatures, and the influence of parameters on the performance of the vortex tube has scarcely been studied. This study is aimed to find the influence of various parameters on the performance of the vortex tube, the best geometric value of vortex tube and the realizable method to reach the required cold out flow rate 40 kg/s . First of all, setting up an original 3-D simulation vortex tube model. By comparing experiment results reported in the literature and our simulation results, a most suitable model for the simulation of the vortex tube is obtained. Secondly, we perform simulations to optimize parameters that can deliver a set of desired output, such as cold stream pressure, temperature and flow-rate. We also discuss the use of the cold air flow for petroleum engineering applications. / Dissertation/Thesis / M.S. Mechanical Engineering 2013
97

Etude numérique de l'auto-inflammation des solides par simulation numérique directe : application au polyméthacrylate de méthyle / Numerical Study of Solid Fuels Auto-Ignition Using Direct Numerical Simulation : Application to the Polymethyl Methacrylate.

Roblin, Simon 16 December 2016 (has links)
La propagation des incendies à l’échelle de locaux et de villes est un enjeu majeur. Elle est notamment conditionnée par l’inflammation des matériaux dans les locaux attenants au sinistre. Cette dernière résulte de l’allumage du mélange gazeux combustible issu de la décomposition thermique de la phase condensée.Deux types d’inflammation sont définis dans la littérature : l’inflammation pilotée par la présence d’une source d’allumage, et l’auto-inflammation, résultant de l’emballement de la réaction dans la phase gazeuse. L’auto-inflammation joue un rôle majeur dans le contexte d’une propagation de local à local. Toutefois, ce processus n’a été que très peu étudié expérimentalement du fait de sa complexité et seules des analyses théoriques sont aujourd’hui disponibles concernant les phénomènes en jeu.L’enjeu de la présente étude est de caractériser les régimes d’autoallumage en fonction de différentes typologies de solide (comportement thermique et cinétique), afin de mieux comprendre leurs processus et leurs conditions d’occurrence. Cette compréhension fine permet alors de développer des modèles plus globaux de propagation pour une considération déterministe du risque incendie à l’échelle urbaine.Le caractère bref et local de l’auto-inflammation impose le choix d’une méthode de résolution complète des écoulements, des transferts et de la chimie. La Simulation Numérique Directe (DNS) a donc été sélectionnée afin de capter ces phénomènes, avec l’introduction d’une cinétique fine et non infiniment rapide de la décomposition thermique et de la combustion. / Fire propagation on the scale of buildings and cities is a major stake. It is conditioned by the ignition of solid fuels in rooms adjacent to the one where the disaster originally takes place. The ignition is so piloted by the initiation of the combustion reaction of the gaseous mixture stemming from the thermal decomposition of the condensed phase induced by heat transfer.Two types of ignition are defined in the literature: piloted-ignition related to the presence of a hot spot and auto-ignition resulting from the thermal runaway within the gas phase. The auto-ignition plays a major role in the context of fire spread between rooms. However, this process has been very little experimentally studied, because of its complexity, and only theoretical analyses were lead concerning the phenomena which take place during solid fuels auto ignition.The aim of the present study is to characterize auto-ignition regimes according to various solid typologies (regarding to thermal and kinetic behaviour) in order to understand better their processes and their occurrence conditions. Thereby, this fine understanding allows to develop global models of fire spread for a deterministic consideration of the fire hazards at urban scale.The brief and local character of the auto-ignition requires the choice of a complete resolution for flows, transfers and chemistry. Thus, the Direct Numerical Simulation (DNS) was selected to capture the phenomena, with the introduction of a fine and non-infinitely fast chemistry of thermal decomposition and combustion.
98

Computational Studies on the Dynamics of Small-Particle Suspensions using Meso-Scale Modeling / メソスケールモデリングによる微粒子懸濁液のダイナミクスに関する計算科学的研究 / メソ スケール モデリング ニ ヨル ビリュウシ ケンダクエキ ノ ダイナミクス ニ カンスル ケイサン カガクテキ ケンキュウ

Iwashita, Takuya 23 March 2009 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14589号 / 工博第3057号 / 新制||工||1455(附属図書館) / 26941 / UT51-2009-D301 / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 山本 量一, 教授 宮原 稔, 教授 大嶋 正裕 / 学位規則第4条第1項該当
99

HYDRAULIC ANALYSIS OF FREE-SURFACE FLOWS INTO HIGHLY PERMEABLE POROUS MEDIA AND ITS APPLICATIONS / 高浸透能多孔質媒体中への開水路流れの水理解析法とその応用に関する研究 / コウシントウノウ タコウシツ バイタイチュウ エ ノ カイスイロ ナガレ ノ スイリ カイセキホウ ト ソノ オウヨウ ニ カンスル ケンキュウ

GHIMIRE, BIDUR 24 September 2009 (has links)
In this study, a comprehensive approach including mathematical, numerical and experimental study has been taken in order to develop new models for describing free surface flow behavior in porous media. The study suggested that modeling free-surface flow in porous media is possible using a single equation capable of showing proper transition between inertial and classical Darcian flow, based on the similarity distribution functions of depth and velocity. The developed integral model inherits both the flow regimes as depicted in the analysis. For both laminar and turbulent flows through porous media, the integral models give satisfactory results. Also the proposed algorithm for numerical simulation is capable of solving various problems of free-surface flow through porous media. This study adds a new dimension to fluid flow in porous media by replacing Darcy's equation with new models that are capable of representing both Darcy and non-Darcy flow behaviors. These are new nonlinear ordinary differential equations inherited both the flow regimes investigated. Integral formulations for unsteady depth distribution, velocity and front speed under constant water level and constant flux discharge inlet conditions have been developed based on similarity law. The formulations presented provide additional analytical insight about the intrusion dynamics. It is pointed out that, based on the self-similarity analysis, the temporal intrusion processes can be categorized into the inertia-pressure (IP) and the pressure-drag (PD) regimes. The early inertia-pressure regime is followed by the pressure-drag regime. In addition, the integral models proposed can be successfully used for the solution of a host of other nonlinear problems that admit self-similarity. The analytical and numerical solutions for constant inlet water level condition are verified with experimental observations. The unsteady distributions of flow depth, inflow velocity and front speeds are compared for various porous media characterized by its corresponding porosity and permeability. Analyses indicate that the integral models clearly represent the nonlinear flow behavior in porous media both in laminar and turbulent flow conditions. The integral model results are in agreement with those obtained by similarity solution for the temporal change of velocity, depth at inlet and front positions. The thesis also presents a computational fluid dynamics (CFD) model developed for the analysis of unsteady free-surface flows through porous media. Vertical two-dimensional numerical simulations are carried out for the free-surface flow inside the porous media governed by a set of Navier-Stokes equations extended for porous media flow. This model includes the convective and local inertia terms along with viscous diffusion term and resistance term comprising Darcy's linear resistance and Forchheimer's inertial resistance terms. The Finite volume method is applied using constrained interpolated propagation (CIP) method and highly simplified marker and cell (HSMAC) type pressure solver for the numerical solution. The evolution of moving free surface is governed by volume of fluid (VOF) method, adapted for the flow through porous media. To prevent the spurious oscillation and generate diffusion-free sharp interface, a third order monotone upstream-centered schemes for conservation laws (MUSCL) type total variation diminishing (TVD) schemes is used to solve the VOF convection equation. The power law derivation and validation for the general flux inflow condition are made for a channel having a backward facing step. The result of theoretical analysis is compared with that of the numerical simulation and it shows a good agreement. The model can be a tool for the proposition of some empirical flow relationships using multivariate correlation. In the case of rapid vertical infiltration of water through a vertical column filled with porous media, a number of experiments and analytical investigations are carried out to see the effect of acceleration in the intrusion process. It is concluded that the conventional infiltration models like Green-Ampts infiltration model cannot account for the acceleration effect in the case of high velocity flow. It is revealed that it takes certain time for intruding water to be accelerated to its peak velocity before decreasing to almost constant velocity. The investigations are made for two different cases: constant water level and variable water level above the porous media. For porous media having low permeability, the effect of acceleration was not so significant. In the case of dam break flow over horizontal porous strata, the model is applied to a complicated domain regarding both geometry and flow boundary conditions. Single set of governing equation is implemented to simulate the complex phenomenon. The model shows its capability in simulating the flow where interface between pressurized and open channel flow moves forward. The vertical acceleration has a significant effect on the rapid vertical infiltration which the shallow water equations cannot account for. In particular, it is shown that vertical two dimensional numerical solution that couples the fluid and solid systems simultaneously at macroscopic scale are feasible and extremely beneficial, shedding a new light into the phenomena unavailable otherwise. It is also found that the proposed numerical model can be used for the determination of storm water storage in porous sub-base in a typical road section. The capability of the model is assessed by using the unsteady inflow condition so as to simulate the condition during high precipitation. The model could be a promising tool for planners and decision makers for effective drainage calculations to mitigate urban flood. The model successfully simulates the free surface flow in the bulk fluid as well as in the porous region. The velocities and stresses are assumed to be continuous at the interface of free and porous media so that a single set of governing equations could be solved. The robustness of the model is demonstrated by the capability of the numerical approach proposed in this thesis. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第14916号 / 工博第3143号 / 新制||工||1471(附属図書館) / 27354 / UT51-2009-M830 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 細田 尚, 教授 戸田 圭一, 准教授 岸田 潔 / 学位規則第4条第1項該当
100

Mechanisms Governing the Eyewall Replacement Cycle in Numerical Simulations of Tropical Cyclones

zhu, zhenduo 18 March 2014 (has links)
Eyewall replacement cycle (ERC) is frequently observed during the evolution of intensifying Tropical Cyclones (TCs). Although intensely studied in recent years, the underlying mechanisms of ERC are still poorly understood, and the forecast of ERC remains a great challenge. To advance our understanding of ERC and provide insights in improvement of numerical forecast of ERC, a series of numerical simulations is performed to investigate ERCs in TC-like vortices on a f-plane. The simulated ERCs possess key features similar to those observed in real TCs including the formation of a secondary tangential wind maximum associated with the outer eyewall. The Sawyer-Eliassen equation and tangential momentum budget analyses are performed to diagnose the mechanisms underlying the secondary eyewall formation (SEF) and ERC. Our diagnoses reveal crucial roles of outer rainband heating in governing the formation and development of the secondary tangential wind maximum and demonstrate that the outer rainband convection must reach a critical strength relative to the eyewall before SEF and the subsequent ERC can occur. A positive feedback among low-level convection, acceleration of tangential winds in the boundary layer, and surface evaporation that leads to the development of ERC and a mechanism for the demise of inner eyewall that involves interaction between the transverse circulations induced by eyewall and outer rainband convection are proposed. The tangential momentum budget indicates that the net tendency of tangential wind is a small residual resultant from a large cancellation between tendencies induced by the resolved and sub-grid scale (SGS) processes. The large SGS contribution to the tangential wind budget explains different characteristics of ERC shown in previous numerical studies and poses a great challenge for a timely correct forecast of ERC. The sensitivity experiments show that ERCs are strongly subjected to model physics, vortex radial structure and background wind. The impact of model physics on ERC can be well understood with the interaction among eyewall/outer rainband heating, radilal inflow in the boundary layer, surface layer turbulent processes, and shallow convection in the moat. However, further investigations are needed to fully understand the exhibited sensitivities of ERC to vortex radial structure and background wind.

Page generated in 0.1509 seconds