• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SIW14 and WHI2 : roles in endocytosis, stress response and the organisation of the actin cytoskeleton in Saccharomyces cerevisiae

West, Alison January 2002 (has links)
No description available.
2

Screening and Identification of Everglades Algal Isolates for Biodiesel production

Narendar, Priyanka 05 November 2010 (has links)
This project investigates the potential of the 27 Everglades green algal strains for producing biodiesel. The five potential strains chosen by measuring the neutral lipid content using the Nile red method were Coelastrum 46-4, Coccoid green 64-12, Dactylococcus 64-10, Stigeoclonium 64-8 and Coelastrum 108-5. Coelastrum 108-5 and Stigeoclonium 64-8 yielded the same amount of lipids in both Gravimetric and Nile red method. A linear relationship between algal biomass and lipid accumulation was seen in Coelastrum 46-4, Coccoid green 64-12, Stigeoclonium 64-8 and Coelastrum 108-5 indicating that increase in algal biomass increased the lipid accumulation. Nitrogen and phosphorous stress conditions were also studied where higher lipid accumulation was observed significantly (p < 0.05) in 64-8 Stigeoclonium and 64-12 Coccoid green. Collectively, it could be summarized that Coelastrum 108-5, Coccoid green 64-12 and Stigeoclonium 64-8 were promising in some aspects and could be used for further studies.
3

LONG-TERM PRODUCTIVITY OF LEUCAENA (LEUCAENA LEUCOCEPHALA)-GRASS PASTURES IN QUEENSLAND

Alejandro Radrizzani Bonadeo Unknown Date (has links)
Hedgerows of the fodder tree legume Leucaena leucocephala (Lam.) de Wit ssp. glabrata (Rose Zárate) (leucaena) planted with companion grass (leucaena-grass pasture) form a productive, profitable and sustainable tropical pasture in northern Australia. Leucaena is renowned for its longevity (>30 years) and productivity under regular grazing, and this is a key factor in its profitability. To-date graziers and researchers have not been concerned about the sustainability of commercial leucaena-grass pastures, which are rarely fertilized. However, nutrient depletion could be expected after many years of nutrient removal under heavy grazing without replenishment, even on soils of moderate initial fertility. This study investigated the long-term productivity of leucaena-grass pastures in relation to nutrient depletion in Queensland. Experimental trials were conducted at 3 research stations and 6 commercial cattle properties. Prior to conducting field trials, a postal survey of leucaena growers ascertained perceived changes in leucaena, grass and livestock productivity over time. Physical and management factors influencing long-term pasture productivity were also explored. Graziers reported that leucaena productivity had declined in 58% of aging pastures. Lower livestock productivity was associated with declining leucaena growth, even though grass growth remained vigorous. Leucaena growth decline was more frequent on soil types of marginal initial fertility. Maintenance fertilizer was not applied to most (98%) leucaena pastures surveyed despite significant amounts of nutrient removal, particularly phosphorus (P) and sulphur (S), occurring over prolonged periods of moderate to high grazing pressure. It was predicted that under current management practices large areas of commercial leucaena pasture will be affected by soil nutrient depletion over the next 10 years. The effect of age of leucaena plants on pasture productivity was investigated in pastures aged from 8 to 38 years. Leucaena growth, expressed as rainfall use efficiency (RUE), declined with age (from 4.0 to 1.9 kg total dry matter (DM)/ha/mm), as did leaf nitrogen (N), P and S concentrations. Leucaena productivity decline was attributed to P and S deficiency restricting growth and symbiotic dinitrogen (N2) fixation. Composition of interrow grass changed from native grass dominance before leucaena establishment to green panic (Panicum maximum var. trichoglume) dominance in the aging leucaena pastures, particularly adjacent to leucaena hedgerows. This was attributed to increased soil Navailability. Leucaena and grass roots were concentrated in the topsoil; however, leucaena roots did extend beyond 1 m depth while grass roots did not. Changes in topsoil organic carbon (OC) and total nitrogen (TN) resulting from the planting of leucaena hedgerows into native grass pastures and previously cropped soils were studied. Topsoil OC and TN contents increased significantly under leucaena pasture (OC from 81-290 kg/ha/year and TN from 12-24 kg/ha/yr). Since TN and OC showed similar trends, there was no significant effect on carbon:N ratios. Leucaena contributed to soil OC both directly via plant part decomposition, and indirectly, via enhanced grass growth in the inter-row. Lower topsoil OC accumulation rates (81 kg/ha/yr) were observed in the older leucaena-grass pastures related to the decline in yield and vigour of leucaena in these aging pastures. The amount of carbon dioxide equivalent (CO2-e) accumulated in soil OC in productive leucaena-grass pasture was estimated to be higher than the amount of CO2-e emitted in methane from beef production from these pastures, thus positively impacting on their greenhouse gas balance. Leucaena responses to P and/or S applications were evaluated in a 30 year-old leucaenagrass pasture. Leucaena RUE and symbiotic N2 fixation were restricted by S deficiency. Sulfur concentration in leaf tissue and high N:S ratio were useful indicators of S deficiency. Although leucaena growth and its nutritional status were little affected by P application, symbiotic N2 fixation did respond significantly to P application. Leucaena and grass responses to fertiliser applications were further evaluated at a variety of soil types and environments on 8 sites in Queensland. Increased leucaena RUE (from 3.1 to 4.6 kg total DM/ha/mm) and enhanced nutritional status at most sites showed that leucaena plants were restricted by P and/or S deficiency. The major factors contributing to the P and S deficiencies were: a) inherent low soil P and/or S fertility, b) nutrient removal by cropping and grazing, c) shallow soils, d) acid soils, and e) grass competition for available water and nutrients. Inter-row cultivation (with or without fertiliser) had little effect on leucaena growth but significantly increased grass RUE (from 4.7 to 7.0 kg total DM/ha/mm) at some sites probably due to enhanced mineralization of N. Leaf P and S concentrations were not reliable indicators of deficiencies of these nutrients, possibly due to inadequate leaf sampling conditions. The effects of ambient temperature, water stress and phenological development of plant on nutrient concentrations in leucaena leaf was investigated to determine whether leaf tissueanalysis can reliably predict nutrient deficiencies. The youngest fully expanded leaf (YFEL) was established as the most appropriate leaf tissue for predicting nutritional status of leucaena plants since the YFEL: (a) was an easily identifiable tissue in which nutrient shifts were at a minimum; (b) provided information for readily mobile (N, P and potassium) and variably mobile (S, copper and zinc) nutrients, thus simplifying leaf collection; and (c) facilitated comparison of data from leaves of similar physiological age in different growing conditions and sites. Nutrient concentrations in YFEL were significantly influenced by water stress and phenological stage of plant development (particularly flowering and pod filling) through the mechanism of rate of leaf appearance. Chronological age of the YFEL, an indicator of leaf appearance, varied from 12 to >70 days depending upon plant phenological stage, being >140 days under prolonged water stress. It was found that nutrient concentrations in leucaena YFEL can only be interpreted against critical concentrations if plants are actively growing (October-April) in a vegetative stage and YFEL are <20 days old. This will occur if there is no water stress for ≥28 days prior to sampling. A close correlation existed between chronological age of YFEL and leaf calcium (Ca) concentration. Calcium concentration could be used to assess the age of YFEL and thereby determine the suitability of tissue samples for nutrient analysis and interpretation. Leaves with Ca concentrations >0.7% DM should be discarded as they are likely to be too old (>20 days). The research program has identified that leucaena established on non-alluvial soils need to be provided with regular maintenance P and S fertiliser to promote symbiotic N2 fixation and to maintain high RUE. At present, many leucaena pastures are likely to be suffering undiagnosed nutrient deficiencies that will be limiting pasture and animal productivity and enterprise profitability. Youngest fully expanded leaf analysis can be used as a predictive tool to diagnose nutrient deficiencies provided the recommended protocol is followed. Further investigation is required to: a) assess the duration of responses to applied fertiliser to determine frequency of application; b) investigate the rate of maintenance fertiliser P and S that has to be applied to maintain leucaena symbiotic N2 fixation and RUE at a desired level to benefit both forage quality and quantity, and soil fertility; c) study methods of fertiliser placement for adequate and timely supply of nutrients, particularly P, to leucaena roots; and d) confirm the use of Ca concentration in YFEL as a predictor of optimum leaf age for the range of soils and areas where leucaena is grown.
4

Assessment of soil fertility change and sustainability of agroecological management in different land use systems of the southern Ecuadorian Andes / Bewertung der Veränderung der Bodenfruchtbarkeit und der Nachhaltigkeit des agroökologischen Managements in verschiedenen Landnutzungssystemen Südecuadors anhand quantitativer und qualitativer Methoden

Bahr, Etienne 16 June 2015 (has links) (PDF)
The thesis was conducted to investigate soil fertility changes and assess the sustainability of agroecological management in different land-use systems of the southern Ecuadorian Andes using quantitative and qualitative methods. Ecuador still holds the highest deforestation rate of all Latin American countries which also has a large impact in the research area by forest conversion into agricultural land. Agricultural land-use systems in the research area are multifaceted due to heterogeneous biophysical and socio-economic conditions. To map this diversity, land-use systems were investigated in Yantzaza (low-external-input), El Tambo (irrigated cash crops) and San Lucas (integrated nutrient management). Yet, management effects on soil fertility have not been assessed systematically in Ecuadorian farming systems which hampers the evaluation whether agroecological management is sustainable. Therefore, the present study used a set of quantitative and qualitative approaches to assess soil fertility changes at plot and farm scale with a nutrient balance/chronosequence approach and local expert knowledge. Nutrient balances were modeled with Nutmon after adaptation of difficult-to-quantify flows to the local conditions facilitating area and land-use specific calculation. Soil nutrient balances in the research area were diverse and varied between −151 to 66 kg ha-1 a-1, −4 to 33 kg ha-1 a-1 and −346 to 39 kg ha-1 a-1 for NPK, respectively. The evaluation of socio-economic and soil fertility explanatory variables revealed that up to 70% of the balances’ variability could be explained. Land-uses with a strong market orientation such as annual crops in El Tambo received large amounts of external inputs which were often focused on mineral N fertilization causing strongly negative PK balances. In contrast, P balances were mainly positive after the application of organic fertilizers and nutrient recycling as was found in perennial crops of San Lucas. NP balances in annual crops of Yantzaza were most negative due to the low-external-input system with nonexistent fertilization as well as leaching and burning of crop residues. Highest soil nutrient stocks were found in land-uses benefiting from a surplus of within-farm flows. The quantification of soil nutrient stocks and their temporal changes were carried out with a chronosequence approach in Yantzaza. SOC stocks in annual/perennial crops and pastures decreased between 14% and 19% after forest conversion by slash-and-burn. Annual sites were abandoned not later than five years after forest conversion due to a shortage of available N and P closely linked to low-external-input management. Stocks for TN, TP, TS and exchangeable bases increased above forest level in perennial crops and pastures 6-20 years after forest conversion. Yet a strong decrease in SOC and soil nutrient stocks was found in oldest perennial and pasture sites compared to medium aged sites. This was traced back to adverse site processes such as the decay of clay humus complexes, leaching as well as poor pasture management. To assess sustainability of the agroecological management, a set of sustainability indicators was implemented including N balances, yearly N stock change and SOC stocks as well as total (TN) and available (PO4-P) soil nutrient stocks. Sustainability assessment took place based on individual land-uses and nutrients within each pilot study since soil fertility change did not show a consistent trend within one research area. Despite mainly negative soil nutrient balances, the impact on the yearly soil nutrient stock change was often negligible due to large soil nutrient pools. Annual and perennial crops of Yantzaza and pastures of San Lucas exceeded the threshold value of 1% for yearly TN stock losses. Yet, only annual crops in Yantzaza, having the highest yearly TN stock losses of 4.9%, also showed severe TN and SOC losses between 15-25% below those of the forest reference area. Therefore, the present agroecological management of annuals in Yantzaza is not sustainable which was also indicated by the abandonment of these sites not later than 5 years after forest conversion due to soil fertility decline. Hence, it is proposed to install an integrated agricultural management in annual crops of Yantzaza using nutrient recycling and fertilization for the replenishment of soil nutrient stocks. Nutrient balance studies indicated an average N-fertilizer application of more than 200 kg ha-1 a-1 for annual crops in El Tambo and low SOC stocks in soils of the colluvial foot slopes. Therefore, a laboratory incubation experiment was conducted to investigate fertilization effects of urea and newly introduced guinea pig manure on the microbial activity in colluvial and eroded soils of El Tambo. While urea fertilization induced an acceleration of SOM mineralization, a combined fertilization (urea + GPM) increased the amount of microbial biomass and provided mineral nitrogen for immediate plant uptake. SOM stocks in colluvial soils were 40% below those of eroded soils which was partly due to the positive priming effect after urea fertilization. A participatory appraisal with local farmers resulted in the adaptation of the present harvest residue management aiming at SOM maintenance in colluvial soils. Yet, the calculation of the potential for SOM replenishment indicated that only the maize residue biomass had the potential to compensate for SOM mineralization losses. Therefore, it is recommended to support SOM replenishment by additional organic inputs since SOM has to be maintained in the long-term to enable agricultural productivity.
5

Assessment of soil fertility change and sustainability of agroecological management in different land use systems of the southern Ecuadorian Andes

Bahr, Etienne 06 May 2015 (has links)
The thesis was conducted to investigate soil fertility changes and assess the sustainability of agroecological management in different land-use systems of the southern Ecuadorian Andes using quantitative and qualitative methods. Ecuador still holds the highest deforestation rate of all Latin American countries which also has a large impact in the research area by forest conversion into agricultural land. Agricultural land-use systems in the research area are multifaceted due to heterogeneous biophysical and socio-economic conditions. To map this diversity, land-use systems were investigated in Yantzaza (low-external-input), El Tambo (irrigated cash crops) and San Lucas (integrated nutrient management). Yet, management effects on soil fertility have not been assessed systematically in Ecuadorian farming systems which hampers the evaluation whether agroecological management is sustainable. Therefore, the present study used a set of quantitative and qualitative approaches to assess soil fertility changes at plot and farm scale with a nutrient balance/chronosequence approach and local expert knowledge. Nutrient balances were modeled with Nutmon after adaptation of difficult-to-quantify flows to the local conditions facilitating area and land-use specific calculation. Soil nutrient balances in the research area were diverse and varied between −151 to 66 kg ha-1 a-1, −4 to 33 kg ha-1 a-1 and −346 to 39 kg ha-1 a-1 for NPK, respectively. The evaluation of socio-economic and soil fertility explanatory variables revealed that up to 70% of the balances’ variability could be explained. Land-uses with a strong market orientation such as annual crops in El Tambo received large amounts of external inputs which were often focused on mineral N fertilization causing strongly negative PK balances. In contrast, P balances were mainly positive after the application of organic fertilizers and nutrient recycling as was found in perennial crops of San Lucas. NP balances in annual crops of Yantzaza were most negative due to the low-external-input system with nonexistent fertilization as well as leaching and burning of crop residues. Highest soil nutrient stocks were found in land-uses benefiting from a surplus of within-farm flows. The quantification of soil nutrient stocks and their temporal changes were carried out with a chronosequence approach in Yantzaza. SOC stocks in annual/perennial crops and pastures decreased between 14% and 19% after forest conversion by slash-and-burn. Annual sites were abandoned not later than five years after forest conversion due to a shortage of available N and P closely linked to low-external-input management. Stocks for TN, TP, TS and exchangeable bases increased above forest level in perennial crops and pastures 6-20 years after forest conversion. Yet a strong decrease in SOC and soil nutrient stocks was found in oldest perennial and pasture sites compared to medium aged sites. This was traced back to adverse site processes such as the decay of clay humus complexes, leaching as well as poor pasture management. To assess sustainability of the agroecological management, a set of sustainability indicators was implemented including N balances, yearly N stock change and SOC stocks as well as total (TN) and available (PO4-P) soil nutrient stocks. Sustainability assessment took place based on individual land-uses and nutrients within each pilot study since soil fertility change did not show a consistent trend within one research area. Despite mainly negative soil nutrient balances, the impact on the yearly soil nutrient stock change was often negligible due to large soil nutrient pools. Annual and perennial crops of Yantzaza and pastures of San Lucas exceeded the threshold value of 1% for yearly TN stock losses. Yet, only annual crops in Yantzaza, having the highest yearly TN stock losses of 4.9%, also showed severe TN and SOC losses between 15-25% below those of the forest reference area. Therefore, the present agroecological management of annuals in Yantzaza is not sustainable which was also indicated by the abandonment of these sites not later than 5 years after forest conversion due to soil fertility decline. Hence, it is proposed to install an integrated agricultural management in annual crops of Yantzaza using nutrient recycling and fertilization for the replenishment of soil nutrient stocks. Nutrient balance studies indicated an average N-fertilizer application of more than 200 kg ha-1 a-1 for annual crops in El Tambo and low SOC stocks in soils of the colluvial foot slopes. Therefore, a laboratory incubation experiment was conducted to investigate fertilization effects of urea and newly introduced guinea pig manure on the microbial activity in colluvial and eroded soils of El Tambo. While urea fertilization induced an acceleration of SOM mineralization, a combined fertilization (urea + GPM) increased the amount of microbial biomass and provided mineral nitrogen for immediate plant uptake. SOM stocks in colluvial soils were 40% below those of eroded soils which was partly due to the positive priming effect after urea fertilization. A participatory appraisal with local farmers resulted in the adaptation of the present harvest residue management aiming at SOM maintenance in colluvial soils. Yet, the calculation of the potential for SOM replenishment indicated that only the maize residue biomass had the potential to compensate for SOM mineralization losses. Therefore, it is recommended to support SOM replenishment by additional organic inputs since SOM has to be maintained in the long-term to enable agricultural productivity.

Page generated in 0.1189 seconds