• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser surface treatment of nylon 6,6 for the modification of wettability characteristics and subsequent enhancement of osteoblast cell response

Waugh, David G. January 2010 (has links)
The control of cell adhesion to synthetic polymers is a key factor in tissue engineering, resting on the ability to direct specific cell types to adhere and proliferate in order to stimulate tissue reconstruction. But often the surface properties are compromised for the sake of the bulk properties, leading to surfaces that do not support sufficiently the level of bioactivity required and accordingly the polymeric biomaterial will fail clinically. Laser treatment offers a unique means of enhancing the osteoblast cell response of the surface of a polymeric biomaterial, whilst keeping the already sufficient bulk properties intact. To this end, infra-red (IR) and ultraviolet (UV) lasers have been employed to modify the wettability characteristics of nylon 6,6, as wetting is often the primary factor dictating the adhesion and bonding potential of materials, as a route to enhancing the surface in terms of osteoblast cell response. What is more, modifying wettability characteristics in this way is a highly attractive means of estimating the biofunctionality of a polymer. IR (CO2) and UV (F2 and KrF excimer) lasers were employed to carry out two different processes: laser whole area irradiative processing and laser-induced patterning. With both CO2 and the excimer lasers changes in the wettability characteristics could be effected with subsequent enhancement of osteoblast cell response. This was also the case with both laser-induced patterning and laser whole area irradiative processing. Essentially, an approach has been established whereby the osteoblast cell response on the surfaces of laser treated nylon 6,6 can be predicted through the laser-induced wettability characteristics modification, particularly for the laser whole area irradiative processed nylon 6,6. This ultimately allows one to determine the osteoblast cell response of the laser surface treated nylon 6,6 surfaces directly from the laser operating parameters. In concurrence with established wetting theory the laser whole area irradiative processing of the nylon 6,6 surfaces caused increased surface roughness, increased surface oxygen content, increased polar component, γP , and increased total surface energy, γT ; thereby generating surfaces displaying reduced contact angle, θ, making the nylon 6,6 surfaces more hydrophilic. The laser-induced patterned samples differed from current theory insofar as the nylon 6,6 surfaces became less hydrophilic due to an increase in θ despite an increase in surface roughness, an increase in surface oxygen content, an increase in γP and an increase in γT . This phenomena can be explained by the transition in wetting regimes from a Wenzel regime to a mixed-state wetting regime. Nevertheless, collation of the wettability characteristics results revealed that θ was a strong correlative decreasing function of both γP and γT , indicating that surface energy played a large role in determining the wetting nature of the nylon 6,6. It was found that for all laser whole area irradiative processed nylon 6,6 surfaces the osteoblast cell response was an increasing correlative and therefore predictive function of θ and was a decreasing function of γP . To an extent, the surface oxygen content and surface roughness could be used indirectly to foretell the osteoblast cell response of the nylon 6,6 surfaces. This is on account of the CO2 and KrF excimer laser whole area irradiative processing bringing about increased surface toxicity, which above a certain level hindered the osteoblast cell response. For the laser-induced patterned nylon 6,6 samples there did not appear to be any particular correlative trend between the modified surface parameters and osteoblast cell response. This can be accounted for by the transition in wetting regimes. Another important factor is that cell morphologies were modulated over all samples which suggests that varying surface parameters on account of laser surface treatment gave rise to variations in cell signaling. It was determined that θ, γP and γT all had very strong correlative relationships with the cytotoxicity. The cytotoxicity reduced upon an increase in θ until a minimum constant was achieved, whereas the cytotoxicity remained constant at low γP and γT until a point at which the cytotoxicity began to increase. These results are noteworthy as they allow one to deduce that, with constant cytotoxicity levels, the osteoblast cell response appeared to be modulated by the wettability characteristics. But once the cytotoxicity increased, the toxicity began to dominate and so negated the identified positive wettability characteristic correlations with osteoblast cell response. Practically, the surface roughness and surface oxygen content could be implemented indirectly to estimate the cytotoxicity. Increase in cytotoxicity was the result of the laser processing with higher fluences generating excessive melting. As a result of this, it is possible to deduce that there was a maximum threshold fluence, beyond which the toxicity of the nylon 6,6 began to dominate, giving rise to a less enhanced osteoblast cell response. On account of the correlative trends which have been identified between the laser surface treatment, wettability characteristics and osteoblast cell response of nylon 6,6 it is likely for one to have the ability to estimate the osteoblast cell response in vitro. This is significant as it indicates that laser surface modification of polymeric materials could have tremendous potential for application within the field of regenerative medicine.
2

Polydimethylsiloxane Containing Block Copolymers: Synthesis and Characterization of Alternating Poly(Arylene Ether Phosphine Oxide)-B-Siloxane and Segmented Nylon 6,6 -B-Siloxane Copolymers

Polk, William David 10 December 2001 (has links)
Two novel classes of siloxane containing, organic-inorganic block copolymers were prepared using different synthetic approaches. The first copolymers were alternating poly(arylene ether phosphine oxide)-poly(dimethylsiloxane) systems, prepared via oligomeric silylamine-hydroxyl reactions. Secondly, segmented nylon 6,6-poly(dimethylsiloxane) block copolymers were synthesized via a non-aqueous adaptation of the "nylon 6,6 salt" hydrolytic polyamidization, using bis(aminopropyl) dimethylsiloxane oligomer as a co-reactant. Three series of "perfectly" alternating block copolymers were produced from well characterized hydroxyl-terminated poly(arylene ether phosphine oxide) and dimethylamine-terminated poly(dimethylsiloxane) oligomers, in order to investigate both block length and chemical composition effects. Copolymerization in chlorobenzene resulted in high molecular weight materials capable of forming optically clear, nanophase separated films, which displayed unusual morphologies and good mechanical strength. Thermal gravimetric analysis showed high thermo-oxidative stability and increasing char yield with increasing siloxane content. Additional thermal and mechanical investigations provided evidence of selective phase mixing, particularly at shorter block lengths. Surface analysis showed an enrichment of the siloxane blocks at the air-polymer interface in comparison to the bulk state. This behavior increased in proportion to the length of the parent siloxane oligomers. Evaluation of selected optical properties, e.g., refractive indices, revealed linear trends resulting in values of compositionally weighted averages. Conversely, a series of nylon 6,6-siloxane copolymers were produced from the polycondensation of preformed propylamine-terminated poly(dimethylsiloxane)s, solid nylon 6,6 salt and a corresponding amount of adipic acid to afford siloxane-amide semi-crystalline copolymers with siloxane content ranging from 10 to ~45 wt%. The characterization of high molecular weight and covalent siloxane-amide linkages was hindered by insolubility. For example, crystallinity of the nylon 6,6 precluded the use of common solution techniques, while the susceptibility of the siloxane blocks towards ionic redistribution prevented the use of strongly acidic solvents. However, development of a novel analytical technique using solid state 13C NMR and liquid-solid extraction provided evidence for the presence of covalent bonding between the dissimilar oligomer chains. Thermal gravimetric analysis of resultant copolymers revealed an increase in char yield with increasing siloxane content, a preliminary indicator of increased fire resistance, which was supported by subsequent qualitative Bunsen burner observations. Differential scanning calorimetry showed retention of the polyamide crystalline melt with levels of siloxane incorporation of up to 45 weight %. In conclusion, two novel classes of polydimethylsiloxane containing block copolymers have been successfully synthesized, despite the complications created as a result of the polar/non-polar interactions developed between a semi-inorganic polydimethylsiloxane and the hydrocarbon based polyarylene ethers and nylon 6,6. / Ph. D.

Page generated in 0.0271 seconds