• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membranas porosas de N,O-carboximetilquitosana/quitosana para aplicação na prevenção de adesões pericárdicas pós-cirúrgicas / Porous membranes of N,O-carboxymethylchitosan/chitosan for applying in the prevention of postsurgical pericardial adhesions

Fiamingo, Anderson 16 March 2012 (has links)
Este trabalho teve como objetivo produzir e caracterizar membranas de quitosana e de N,O-carboximetilquitosana reticuladas, que apresentassem propriedades físicas e químicas adequadas para desempenhar o papel de matriz para proliferação das células mesoteliais. As características estruturais e morfológicas das amostras purificadas de quitosana (amostra Q, adquirida da Yue Planting, China) e carboximetilquitosana na forma sódica (amostra NaCMQH, adquirida da Heppe Medical, Alemanha, e amostra NaCMQD, adquirida da Dayang Chemicals, China) foram investigadas através da espectroscopias de ressonância magnética nuclear e no infravermelho, condutimetria, solubilidade em função do pH e viscosimetria. As membranas de carboximetilquitosanas (amostras M-CMQHs e M-CMQDs) foram confeccionadas via liofilização, e glutaraldeído foi empregado como agente reticulante em diferentes concentrações para avaliar o seu efeito sobre o grau de reticulação e propriedades das membranas. As membranas foram caracterizadas quanto ao grau de reticulação, grau de hidratação, microscopia eletrônica de varredura (MEV), termogravimetria, teste mecânico de tração e quanto a susceptibilidade à degradação enzimática. A amostra Q apresentou grau médio de acetilação (<span style=\"text-decoration: overline\">GA) de 23,60%, sendo solúvel em pH &le; 6,5. A amostra NaCMQH apresentou <span style=\"text-decoration: overline\">GA = 16,32% e grau médio de substituição (<span style=\"text-decoration: overline\">GS) de 1,68, sendo insolúvel no intervalo 2,5 &le; pH &le; 6,5, a amostra de NaCMQD apresentou <span style=\"text-decoration: overline\">GA = 3,31% e <span style=\"text-decoration: overline\">GS = 1,43, sendo insolúvel no intervalo 3,0 &le; pH &le; 7,0. A reticulação das membranas de carboximetilquitosana (amostras M-CMQHs e M-CMQDs) foi realizada com a finalidade de reduzir sua solubilidade e melhorar as propriedades mecânicas. O grau médio de reticulação (<span style=\"text-decoration: overline\">GR) foi tanto maior quanto maior a concentração de glutaraldeído empregada na reação, variando de <span style=\"text-decoration: overline\">GR = 10,39 &plusmn; 0,37% ([glutaraldeído] = 2,5x10-3 mol L-1) a <span style=\"text-decoration: overline\">GR = 62,38 &plusmn; 1,71% ([glutaraldeído] = 5,0x10-3 mol L-1). As características morfológicas das amostras M-Q, M-CMQHs e M-CMQDs foram observadas pelo emprego de MEV, sendo observada a formação de estruturas porosas, com maior quantidade de poros aparentes quanto maior o <span style=\"text-decoration: overline\">GM de 175 poros mm-2 a 291 poros mm-2 com o aumento do grau de reticulação de 12,30% (amostra M-CMQH-2,5) para 35,82%, (amostra M-CMQH-50). A amostra M-Q apresentou baixa taxa de hidratação (321,16 &plusmn; 18,68%) e alto percentual de massa recuperada (90,62 &plusmn; 2,13%) após imersão por 24 horas em solução PBS, quando comparada às amostras M-CMQHs e M-CMQDs. As amostras M-CMQHs e M-CMQDs apresentaram aumento da resistência máxima à tração com o aumento de <span style=\"text-decoration: overline\"> <span style=\"text-decoration: overline\">GR, aumentando de 0,21 &plusmn; 0,16 MPa (amostra M-CMQD-2,5; <span style=\"text-decoration: overline\">GR &asymp; 10,39%) para 0,82 &plusmn; 0,33 MPa (amostra M-CMQH-50; <span style=\"text-decoration: overline\">GR &asymp; 62,38%). Entretanto, amostras com menor <span style=\"text-decoration: overline\">GR apresentaram aumento dos valores de percentual de elongação, sendo que a amostra M-CMQH-2,5 (<span style=\"text-decoration: overline\">GR &asymp; 12,30%) apresentou elongação máxima de 73,08 &plusmn; 2,20%. A amostra M-Q foi pouco susceptível à hidrólise enzimática ([GlcN] = 47x10-4 &plusmn; 1x10-4 mol L-1) devido à baixa solubilidade da quitosana em pH &gt; 6,5. Já com relação ao efeito do <span style=\"text-decoration: overline\">GR, houve redução da taxa de hidrólise enzimática de [GlcN] = 449x10-4 &plusmn; 15x10-4 mol L-1 para [GlcN] = 105x10-4 &plusmn; 11x10-4 mol L-1, quando o <span style=\"text-decoration: overline\">GR aumentou de 12,30% (amostra M-CMQH-2,5) para 28,64% (amostra M-CMQH-25). As amostras M-CMQH-5, M-CMQH-10, M-CMQD-10 e M-CMQD-25 apresentam as propriedades mais adequadas para o emprego como membranas para a prevenção das adesões pericárdicas, pois apresentam superfícies altamente porosas, com baixas taxa de hidratação e de solubilidade, resistência máxima à tração superior a 0,67 MPa, percentual de elongação superior à 30%, e degradação enzimática inferior a [GlcN] = 400x10-4 mol L-1 após 15 dias de incubação. / The aim of this study was to produce and characterize membranes of chitosan and cross-linked N,O-carboxymethylchitosan, displaying appropriate physical and chemical properties to act as matrices for the proliferation of mesothelial cells. The structural and morphological characteristics of the purified samples of chitosan (sample Q, acquired from Yue Planting, China) and sodium carboxymethylchitosan (sample NaCMQH, acquired from Heppe Medical, Germany, and sample NaCMQD, acquired from Dayang Chemicals, China) were determined by nuclear magnetic resonance spectroscopy (NMR1H), infrared spectroscopy, conductometry, viscometry and pH-solubility tests. The carboxymethylchitosan membranes (M-CMQHs and M-CMQDs) were made up by means of lyophilization, with glutaraldehyde being used as a cross-linking agent at different concentrations to evaluate its effect on the cross-linking degree and on the membranes properties. The membranes were characterized in terms of cross-linking degree and hydration rate, by scanning electronic microscopy (SEM), thermogravimetry, ultimate tensile strength and the susceptibility to enzymatic degradation. The sample Q showed average degree of acetylation (<span style=\"text-decoration: overline\">DA) of 23.60%, being soluble at pH &le; 6.5. The sample NaCMQH presented <span style=\"text-decoration: overline\">DA=16.32% and average degree of substitution (<span style=\"text-decoration: overline\">DS) of 1.68, being insoluble in the region of 2.5 &le; pH &le; 6.5. The sample NaCMQD presented <span style=\"text-decoration: overline\">DA=3.31% and <span style=\"text-decoration: overline\">DS=1.43, being insoluble in the region of 3.0 &le; pH &le; 7.0. The cross-linking of carboxymethylchitosan membranes (M-CMQHs and M-CMQDs) was carried out to reduce its solubility and to improve its the physical properties. The higher the glutaraldehyde concentration employed in the reaction, the higher average cross-linking degree (<span style=\"text-decoration: overline\">CD), which ranged from 10.39 &plusmn; 0.37% ([glutaraldehyde] = 2,5x10-3 mol L-1) to 62.38 &plusmn; 1.71% ([glutaraldehyde] = 2,5x10-3 mol L-1). The morphological characteristics of the samples M-Q, M-CMQHs M-CMQDs were observed through SEM, evidencing the formation of porous structures with a larger quantity of apparent pores as <span style=\"text-decoration: overline\">DC increased, ranging from 175 pores mm-2 to 291 pores mm-2 when <span style=\"text-decoration: overline\">DC increased from 12.30% (sample CMQH-M-2.5) to 35.82% (sample M-CMQH-50). The sample M-Q showed low hydration rate (321.16 &plusmn; 18.68%) and high percentage of recovered mass (90.62 &plusmn; 2.13%) after immersion for 24 hours, when compared to samples M-CMQHs and M-CMQDs. Increasing the <span style=\"text-decoration: overline\">DC of the samples M-CMQHs and M-CMQDs resulted in improved mechanical properties as the ultimate tensile strength increased from 0.21 &plusmn; 0.16 MPa (M-CMQD-2.5, <span style=\"text-decoration: overline\">DC &asymp; 10.39%) to 0.82 &plusmn; 0.33 MPa (M-CMQH-50, <span style=\"text-decoration: overline\">DC &asymp; 62.38%). However, those samples with lower <span style=\"text-decoration: overline\">DC values presented an increase in strain at fracture, as the CMQH-M-2.5 sample (<span style=\"text-decoration: overline\">DC &asymp; 12.30%), which registered a strain at fracture of 73.08 &plusmn; 2.20%. The sample M-Q showed a low rate of enzymatic hydrolysis ([GlcN] = 47x10-4 &plusmn; 1x10-4 mol L-1) as a consequence of the low solubility of chitosan at pH &gt; 6.5. Concerning the effects of cross-linked degree, there was a reduction in the enzymatic hydrolysis rate from [GlcN] = 449x10-4 &plusmn; 15x10-4 mol L-1 to [GlcN] = 105x10-4 &plusmn; 11x10-4 mol L-1, when <span style=\"text-decoration: overline\">DC increased from 12.30% (M-CMQH-2.5) to 28.64% (M-CMQH-25). The samples M-CMQH-5, M-CMQH-10, M-CMQD-10 and M-CMQD-25 exhibit appropriate properties to act in the prevention of pericardial adhesions, owing to its highly porous surfaces, low hydration rate and insolubility, ultimate tensile strength exceeding 0.67 MPa, strain at fracture higher than 30% and enzymatic degradation rate lower than [GlcN] = 400x10-4 mol L-1 after 15 days of incubation.
2

Estudos físico-químicos de O-carboximetilação de quitosana / Physico-chemical studies of O-carboxymethylation of chitosan

Silva, Daniella de Souza e 13 September 2011 (has links)
Modificações químicas são executadas com o objetivo de preparar derivados de quitosana com melhores propriedades, inclusive a solubilidade, ampliando as suas possibilidades de aplicação. Neste projeto, gládios de lulas foram utilizados para a extração de beta-quitina, a qual foi submetida ao processo de desacetilação assistida por irradiação de ultrassom de alta intensidade visando à produção de quitosana extensivamente desacetilada. A quitosana extensivamente desacetilada foi então submetida à reação de carboximetilação, visando à preparação de O-carboximetilquitosana. Foram estudados os efeitos da razão molar quitosana/ácido monocloroacético e do tempo sobre a reação de carboximetilação de quitosana e as características do produto obtido. As características estruturais e morfológicas das amostras geradas neste projeto, a saber, beta-quitina, quitosana e os produtos de carboximetilação de quitosana, foram determinadas pelo emprego de espectroscopias de ressonância magnética nuclear e no infravermelho, análise elementar, difração de raios X e microscopia eletrônica de varredura. Medidas de viscosidade foram empregadas para a determinação de massas molares médias viscosimétricas de quitina, quitosana e O-carboximetilquitosana. A solubilidade de O-carboximetilquitosana em meios aquosos em função do pH e do grau médio de carboximetilação foi investigada por espectroscopia UV/visível e a estabilidade térmica foi estudada por análise termogravimétrica.A partir dos espectros de ressonância magnética nuclear de hidrogênio das amostras de carboximetilquitosana foi constatado que a carboximetilação da quitosana ocorreu em extensões diferentes em função das condições reacionais. Também foi constatada a ocorrência de N-carboximetilação, evidenciada pelos sinais observados no intervalo de 3,0-3,4 ppm, atribuídos à mono e dissubstituição dos grupos amino. Porém, dada a baixa intensidade dos sinais, foi concluído que a carboximetilação dos grupos aminos ocorreu em baixa extensão. No intervalo 4,05-4,55 ppm foram observados os sinais correspondentes à ressonância dos hidrogênios dos grupos carboximetil (-CH2-COOD) introduzidos nas posições 3 e 6 das unidades de carboximetilquitosana. A espectroscopia no infravermelho também permitiu a distinção das características estruturais de beta-quitina, quitosana, carboximetilquitosana e a determinação dos graus médios de substituição das amostras carboximetiladas, que variaram no intervalo 0,21&lt;GS&lt;0,43. As análises de difração de raios X e as análises termogravimétricas mostraram que a carboximetilação de quitosana gerou derivados menos cristalinos, mais hidrofílicos e termicamente menos estáveis do que o polímero de partida. As amostras de carboximetilquitosana apresentaram solubilidade em meios ácido (pH&lt;3,0), neutro (pH&asymp;7,5) e alcalino (pH&gt;8,0) devido à ocorrência de cargas ao longo de suas cadeias nesses meios, mas foram insolúveis no intervalo 3,5&lt;pH&lt;7,5. Foi observada a ocorrência de despolimerização simultaneamente à carboximetilação, visto que as amostras de carboximetilquitosana apresentaram valores de massas molares viscosimétricas médias inferiores ao da quitosana de partida. Os resultados deste estudo mostram que o grau médio de substituição das amostras de carboximetilquitosana é fortemente afetado pelo excesso de ácido monocloroacético empregado na reação de derivatização de quitosana, porém o prolongamento da reação não gera derivados mais substituídos. / Chemical modifications are carried out to prepare chitosan derivatives with improved properties, including solubility, extending their application possibilities. In this project, beta-chitin extracted from squid pens was subjected to the ultrasound assisted deacetylation process (USAD Process) aiming the production of extensively deacetylated chitosan. The extensively deacetylated chitosan was submitted to the carboxymethylation reaction to result in O-carboxymethylchiotosan (O-CMC). The effects of the molar ratio of chitosan / monochloroacetic acid and of the reaction time on the carboxymethylation reaction and on the characteristics of the O-CMC samples were studied. The structural and morphological characteristics of the samples generated in this project, beta-chitin, chitosan and carboximethylchitosan, were determined by nuclear magnetic resonance and infrared spectroscopy, elemental analysis, X-rays diffraction and scanning electron microscopy. Viscosity measurements were employed to determine the viscosity average molecular weight of chitin, chitosan and O-CMC. The solubility of O-CMC samples in aqueous solution of different pHs was investigated by UV / visible spectroscopy while the thermal stability was studied by thermogravimetric analysis. The 1H-NMR spectra of the O-CMC samples revealed that the carboxymethylation of chitosan occurred in different extents depending on the reaction conditions. It was also revealed the occurrence of N-carboxymethylation, evidenced by the signals observed in the range of 3.0 ppm - 3.4 ppm, assigned to the mono and disubstitution of amino groups. However, as the signal intensity was low, it was concluded that the N-carboxymethylation occurred in low extension. In the interval 4.05 ppm - 4.55 ppm it were observed the signals corresponding to the resonance of the hydrogens of the carboxymethyl groups (-CH2-COOD) introduced in positions 3 and 6 of the repeating units of O-CMC. The infrared spectroscopy also allowed the distinction of the structural features of beta-chitin, chitosan, carboxymethylchitosan and the determination of the average degree of substitution of carboxymethylated samples, which varied in the range 0,21 &lt;GS &lt;0,43. The X-ray diffraction and thermogravimetric analysis showed that the carboximethylation of chitosan produced derivatives less crystalline, more hydrophilic and thermally less stable than the parent polymer. The O-CMC samples showed solubility in acid (pH &lt;3.0), neutral (pH &asymp; 7.5) and alkaline (pH&gt; 8.0) media due to the occurrence of charges along its chains, but the polymer was insoluble in the range 3.5 &lt;pH &lt;7.5. The occurrence of depolymerization simultaneously to the carboxymethylation reaction was observed since the O-CMC samples showed lower viscosity average molecular weight values as compared to the parent chitosan. The results of this study show that the average degree of substitution of the O-CMC samples is strongly affected by the excess of monochloroacetic acid used in the derivatization reaction of chitosan, but the extension of the reaction for longer times doesn\'t generate more substituted derivatives.
3

Membranas porosas de N,O-carboximetilquitosana/quitosana para aplicação na prevenção de adesões pericárdicas pós-cirúrgicas / Porous membranes of N,O-carboxymethylchitosan/chitosan for applying in the prevention of postsurgical pericardial adhesions

Anderson Fiamingo 16 March 2012 (has links)
Este trabalho teve como objetivo produzir e caracterizar membranas de quitosana e de N,O-carboximetilquitosana reticuladas, que apresentassem propriedades físicas e químicas adequadas para desempenhar o papel de matriz para proliferação das células mesoteliais. As características estruturais e morfológicas das amostras purificadas de quitosana (amostra Q, adquirida da Yue Planting, China) e carboximetilquitosana na forma sódica (amostra NaCMQH, adquirida da Heppe Medical, Alemanha, e amostra NaCMQD, adquirida da Dayang Chemicals, China) foram investigadas através da espectroscopias de ressonância magnética nuclear e no infravermelho, condutimetria, solubilidade em função do pH e viscosimetria. As membranas de carboximetilquitosanas (amostras M-CMQHs e M-CMQDs) foram confeccionadas via liofilização, e glutaraldeído foi empregado como agente reticulante em diferentes concentrações para avaliar o seu efeito sobre o grau de reticulação e propriedades das membranas. As membranas foram caracterizadas quanto ao grau de reticulação, grau de hidratação, microscopia eletrônica de varredura (MEV), termogravimetria, teste mecânico de tração e quanto a susceptibilidade à degradação enzimática. A amostra Q apresentou grau médio de acetilação (<span style=\"text-decoration: overline\">GA) de 23,60%, sendo solúvel em pH &le; 6,5. A amostra NaCMQH apresentou <span style=\"text-decoration: overline\">GA = 16,32% e grau médio de substituição (<span style=\"text-decoration: overline\">GS) de 1,68, sendo insolúvel no intervalo 2,5 &le; pH &le; 6,5, a amostra de NaCMQD apresentou <span style=\"text-decoration: overline\">GA = 3,31% e <span style=\"text-decoration: overline\">GS = 1,43, sendo insolúvel no intervalo 3,0 &le; pH &le; 7,0. A reticulação das membranas de carboximetilquitosana (amostras M-CMQHs e M-CMQDs) foi realizada com a finalidade de reduzir sua solubilidade e melhorar as propriedades mecânicas. O grau médio de reticulação (<span style=\"text-decoration: overline\">GR) foi tanto maior quanto maior a concentração de glutaraldeído empregada na reação, variando de <span style=\"text-decoration: overline\">GR = 10,39 &plusmn; 0,37% ([glutaraldeído] = 2,5x10-3 mol L-1) a <span style=\"text-decoration: overline\">GR = 62,38 &plusmn; 1,71% ([glutaraldeído] = 5,0x10-3 mol L-1). As características morfológicas das amostras M-Q, M-CMQHs e M-CMQDs foram observadas pelo emprego de MEV, sendo observada a formação de estruturas porosas, com maior quantidade de poros aparentes quanto maior o <span style=\"text-decoration: overline\">GM de 175 poros mm-2 a 291 poros mm-2 com o aumento do grau de reticulação de 12,30% (amostra M-CMQH-2,5) para 35,82%, (amostra M-CMQH-50). A amostra M-Q apresentou baixa taxa de hidratação (321,16 &plusmn; 18,68%) e alto percentual de massa recuperada (90,62 &plusmn; 2,13%) após imersão por 24 horas em solução PBS, quando comparada às amostras M-CMQHs e M-CMQDs. As amostras M-CMQHs e M-CMQDs apresentaram aumento da resistência máxima à tração com o aumento de <span style=\"text-decoration: overline\"> <span style=\"text-decoration: overline\">GR, aumentando de 0,21 &plusmn; 0,16 MPa (amostra M-CMQD-2,5; <span style=\"text-decoration: overline\">GR &asymp; 10,39%) para 0,82 &plusmn; 0,33 MPa (amostra M-CMQH-50; <span style=\"text-decoration: overline\">GR &asymp; 62,38%). Entretanto, amostras com menor <span style=\"text-decoration: overline\">GR apresentaram aumento dos valores de percentual de elongação, sendo que a amostra M-CMQH-2,5 (<span style=\"text-decoration: overline\">GR &asymp; 12,30%) apresentou elongação máxima de 73,08 &plusmn; 2,20%. A amostra M-Q foi pouco susceptível à hidrólise enzimática ([GlcN] = 47x10-4 &plusmn; 1x10-4 mol L-1) devido à baixa solubilidade da quitosana em pH &gt; 6,5. Já com relação ao efeito do <span style=\"text-decoration: overline\">GR, houve redução da taxa de hidrólise enzimática de [GlcN] = 449x10-4 &plusmn; 15x10-4 mol L-1 para [GlcN] = 105x10-4 &plusmn; 11x10-4 mol L-1, quando o <span style=\"text-decoration: overline\">GR aumentou de 12,30% (amostra M-CMQH-2,5) para 28,64% (amostra M-CMQH-25). As amostras M-CMQH-5, M-CMQH-10, M-CMQD-10 e M-CMQD-25 apresentam as propriedades mais adequadas para o emprego como membranas para a prevenção das adesões pericárdicas, pois apresentam superfícies altamente porosas, com baixas taxa de hidratação e de solubilidade, resistência máxima à tração superior a 0,67 MPa, percentual de elongação superior à 30%, e degradação enzimática inferior a [GlcN] = 400x10-4 mol L-1 após 15 dias de incubação. / The aim of this study was to produce and characterize membranes of chitosan and cross-linked N,O-carboxymethylchitosan, displaying appropriate physical and chemical properties to act as matrices for the proliferation of mesothelial cells. The structural and morphological characteristics of the purified samples of chitosan (sample Q, acquired from Yue Planting, China) and sodium carboxymethylchitosan (sample NaCMQH, acquired from Heppe Medical, Germany, and sample NaCMQD, acquired from Dayang Chemicals, China) were determined by nuclear magnetic resonance spectroscopy (NMR1H), infrared spectroscopy, conductometry, viscometry and pH-solubility tests. The carboxymethylchitosan membranes (M-CMQHs and M-CMQDs) were made up by means of lyophilization, with glutaraldehyde being used as a cross-linking agent at different concentrations to evaluate its effect on the cross-linking degree and on the membranes properties. The membranes were characterized in terms of cross-linking degree and hydration rate, by scanning electronic microscopy (SEM), thermogravimetry, ultimate tensile strength and the susceptibility to enzymatic degradation. The sample Q showed average degree of acetylation (<span style=\"text-decoration: overline\">DA) of 23.60%, being soluble at pH &le; 6.5. The sample NaCMQH presented <span style=\"text-decoration: overline\">DA=16.32% and average degree of substitution (<span style=\"text-decoration: overline\">DS) of 1.68, being insoluble in the region of 2.5 &le; pH &le; 6.5. The sample NaCMQD presented <span style=\"text-decoration: overline\">DA=3.31% and <span style=\"text-decoration: overline\">DS=1.43, being insoluble in the region of 3.0 &le; pH &le; 7.0. The cross-linking of carboxymethylchitosan membranes (M-CMQHs and M-CMQDs) was carried out to reduce its solubility and to improve its the physical properties. The higher the glutaraldehyde concentration employed in the reaction, the higher average cross-linking degree (<span style=\"text-decoration: overline\">CD), which ranged from 10.39 &plusmn; 0.37% ([glutaraldehyde] = 2,5x10-3 mol L-1) to 62.38 &plusmn; 1.71% ([glutaraldehyde] = 2,5x10-3 mol L-1). The morphological characteristics of the samples M-Q, M-CMQHs M-CMQDs were observed through SEM, evidencing the formation of porous structures with a larger quantity of apparent pores as <span style=\"text-decoration: overline\">DC increased, ranging from 175 pores mm-2 to 291 pores mm-2 when <span style=\"text-decoration: overline\">DC increased from 12.30% (sample CMQH-M-2.5) to 35.82% (sample M-CMQH-50). The sample M-Q showed low hydration rate (321.16 &plusmn; 18.68%) and high percentage of recovered mass (90.62 &plusmn; 2.13%) after immersion for 24 hours, when compared to samples M-CMQHs and M-CMQDs. Increasing the <span style=\"text-decoration: overline\">DC of the samples M-CMQHs and M-CMQDs resulted in improved mechanical properties as the ultimate tensile strength increased from 0.21 &plusmn; 0.16 MPa (M-CMQD-2.5, <span style=\"text-decoration: overline\">DC &asymp; 10.39%) to 0.82 &plusmn; 0.33 MPa (M-CMQH-50, <span style=\"text-decoration: overline\">DC &asymp; 62.38%). However, those samples with lower <span style=\"text-decoration: overline\">DC values presented an increase in strain at fracture, as the CMQH-M-2.5 sample (<span style=\"text-decoration: overline\">DC &asymp; 12.30%), which registered a strain at fracture of 73.08 &plusmn; 2.20%. The sample M-Q showed a low rate of enzymatic hydrolysis ([GlcN] = 47x10-4 &plusmn; 1x10-4 mol L-1) as a consequence of the low solubility of chitosan at pH &gt; 6.5. Concerning the effects of cross-linked degree, there was a reduction in the enzymatic hydrolysis rate from [GlcN] = 449x10-4 &plusmn; 15x10-4 mol L-1 to [GlcN] = 105x10-4 &plusmn; 11x10-4 mol L-1, when <span style=\"text-decoration: overline\">DC increased from 12.30% (M-CMQH-2.5) to 28.64% (M-CMQH-25). The samples M-CMQH-5, M-CMQH-10, M-CMQD-10 and M-CMQD-25 exhibit appropriate properties to act in the prevention of pericardial adhesions, owing to its highly porous surfaces, low hydration rate and insolubility, ultimate tensile strength exceeding 0.67 MPa, strain at fracture higher than 30% and enzymatic degradation rate lower than [GlcN] = 400x10-4 mol L-1 after 15 days of incubation.
4

Estudos físico-químicos de O-carboximetilação de quitosana / Physico-chemical studies of O-carboxymethylation of chitosan

Daniella de Souza e Silva 13 September 2011 (has links)
Modificações químicas são executadas com o objetivo de preparar derivados de quitosana com melhores propriedades, inclusive a solubilidade, ampliando as suas possibilidades de aplicação. Neste projeto, gládios de lulas foram utilizados para a extração de beta-quitina, a qual foi submetida ao processo de desacetilação assistida por irradiação de ultrassom de alta intensidade visando à produção de quitosana extensivamente desacetilada. A quitosana extensivamente desacetilada foi então submetida à reação de carboximetilação, visando à preparação de O-carboximetilquitosana. Foram estudados os efeitos da razão molar quitosana/ácido monocloroacético e do tempo sobre a reação de carboximetilação de quitosana e as características do produto obtido. As características estruturais e morfológicas das amostras geradas neste projeto, a saber, beta-quitina, quitosana e os produtos de carboximetilação de quitosana, foram determinadas pelo emprego de espectroscopias de ressonância magnética nuclear e no infravermelho, análise elementar, difração de raios X e microscopia eletrônica de varredura. Medidas de viscosidade foram empregadas para a determinação de massas molares médias viscosimétricas de quitina, quitosana e O-carboximetilquitosana. A solubilidade de O-carboximetilquitosana em meios aquosos em função do pH e do grau médio de carboximetilação foi investigada por espectroscopia UV/visível e a estabilidade térmica foi estudada por análise termogravimétrica.A partir dos espectros de ressonância magnética nuclear de hidrogênio das amostras de carboximetilquitosana foi constatado que a carboximetilação da quitosana ocorreu em extensões diferentes em função das condições reacionais. Também foi constatada a ocorrência de N-carboximetilação, evidenciada pelos sinais observados no intervalo de 3,0-3,4 ppm, atribuídos à mono e dissubstituição dos grupos amino. Porém, dada a baixa intensidade dos sinais, foi concluído que a carboximetilação dos grupos aminos ocorreu em baixa extensão. No intervalo 4,05-4,55 ppm foram observados os sinais correspondentes à ressonância dos hidrogênios dos grupos carboximetil (-CH2-COOD) introduzidos nas posições 3 e 6 das unidades de carboximetilquitosana. A espectroscopia no infravermelho também permitiu a distinção das características estruturais de beta-quitina, quitosana, carboximetilquitosana e a determinação dos graus médios de substituição das amostras carboximetiladas, que variaram no intervalo 0,21&lt;GS&lt;0,43. As análises de difração de raios X e as análises termogravimétricas mostraram que a carboximetilação de quitosana gerou derivados menos cristalinos, mais hidrofílicos e termicamente menos estáveis do que o polímero de partida. As amostras de carboximetilquitosana apresentaram solubilidade em meios ácido (pH&lt;3,0), neutro (pH&asymp;7,5) e alcalino (pH&gt;8,0) devido à ocorrência de cargas ao longo de suas cadeias nesses meios, mas foram insolúveis no intervalo 3,5&lt;pH&lt;7,5. Foi observada a ocorrência de despolimerização simultaneamente à carboximetilação, visto que as amostras de carboximetilquitosana apresentaram valores de massas molares viscosimétricas médias inferiores ao da quitosana de partida. Os resultados deste estudo mostram que o grau médio de substituição das amostras de carboximetilquitosana é fortemente afetado pelo excesso de ácido monocloroacético empregado na reação de derivatização de quitosana, porém o prolongamento da reação não gera derivados mais substituídos. / Chemical modifications are carried out to prepare chitosan derivatives with improved properties, including solubility, extending their application possibilities. In this project, beta-chitin extracted from squid pens was subjected to the ultrasound assisted deacetylation process (USAD Process) aiming the production of extensively deacetylated chitosan. The extensively deacetylated chitosan was submitted to the carboxymethylation reaction to result in O-carboxymethylchiotosan (O-CMC). The effects of the molar ratio of chitosan / monochloroacetic acid and of the reaction time on the carboxymethylation reaction and on the characteristics of the O-CMC samples were studied. The structural and morphological characteristics of the samples generated in this project, beta-chitin, chitosan and carboximethylchitosan, were determined by nuclear magnetic resonance and infrared spectroscopy, elemental analysis, X-rays diffraction and scanning electron microscopy. Viscosity measurements were employed to determine the viscosity average molecular weight of chitin, chitosan and O-CMC. The solubility of O-CMC samples in aqueous solution of different pHs was investigated by UV / visible spectroscopy while the thermal stability was studied by thermogravimetric analysis. The 1H-NMR spectra of the O-CMC samples revealed that the carboxymethylation of chitosan occurred in different extents depending on the reaction conditions. It was also revealed the occurrence of N-carboxymethylation, evidenced by the signals observed in the range of 3.0 ppm - 3.4 ppm, assigned to the mono and disubstitution of amino groups. However, as the signal intensity was low, it was concluded that the N-carboxymethylation occurred in low extension. In the interval 4.05 ppm - 4.55 ppm it were observed the signals corresponding to the resonance of the hydrogens of the carboxymethyl groups (-CH2-COOD) introduced in positions 3 and 6 of the repeating units of O-CMC. The infrared spectroscopy also allowed the distinction of the structural features of beta-chitin, chitosan, carboxymethylchitosan and the determination of the average degree of substitution of carboxymethylated samples, which varied in the range 0,21 &lt;GS &lt;0,43. The X-ray diffraction and thermogravimetric analysis showed that the carboximethylation of chitosan produced derivatives less crystalline, more hydrophilic and thermally less stable than the parent polymer. The O-CMC samples showed solubility in acid (pH &lt;3.0), neutral (pH &asymp; 7.5) and alkaline (pH&gt; 8.0) media due to the occurrence of charges along its chains, but the polymer was insoluble in the range 3.5 &lt;pH &lt;7.5. The occurrence of depolymerization simultaneously to the carboxymethylation reaction was observed since the O-CMC samples showed lower viscosity average molecular weight values as compared to the parent chitosan. The results of this study show that the average degree of substitution of the O-CMC samples is strongly affected by the excess of monochloroacetic acid used in the derivatization reaction of chitosan, but the extension of the reaction for longer times doesn\'t generate more substituted derivatives.

Page generated in 0.0401 seconds