• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 3
  • 1
  • Tagged with
  • 17
  • 17
  • 13
  • 9
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Switched observers and input-delay compensation for anti-lock brake systems

Hoang, Trong bien 04 April 2014 (has links) (PDF)
Many control algorithms for ABS systems have been proposed in the literature since the introduction of this equipment by Bosch in 1978. In general, one can divide these control algorithms into two different types: those based on a regulation logic with wheel acceleration thresholds that are used by most commercial ABS systems; and those based on wheel slip control that are preferred in the large majority of academic algorithms. Each approach has its pros and cons [Shida 2010]. Oversimplifying, one can say that the strength of the first ones is their robustness; while that of the latter ones their short braking distances (on dry grounds) and their absence of limit cycles. At the midpoint of this industry/academy dichotomy, based on the concept of extended braking stiffness (XBS), a quite different class of ABS control strategies has been proposed by several researchers (see, e.g., [Sugai 1999] and [Ono 2003]). This concept combines the advantages from both the industrial and academic approaches. Nevertheless, since the slope of the tyre characteristic is not directly measurable, it introduces the question of real-time XBS estimation. The first part of this thesis is devoted to the study of this estimation problem and to a generalization of the proposed technique to a larger class of systems. From the technological point of view, the design of ABS control systems is highly dependent on the ABS system characteristics and actuator performance. Current ABS control algorithms on passenger cars, for instance the Bosch ABS algorithm, are based on heuristics that are deeply associated to the hydraulic nature of the actuator. An interesting observation is that they seem to work properly only in the presence of a specific delay coming from the hydraulic actuation [Gerard 2012]. For brake systems that have different delays compared to those of hydraulic actuators, like electric in-wheel motors (with a smaller delay) or pneumatic trailer brakes (with a bigger delay), they might be no longer suitable [Miller 2013]. Therefore, adapting standard ABS algorithms to other advanced actuators becomes an imperative goal in the automobile industry. This goal can be reached by the compensation of the delays induced by actuators. The second part of this thesis is focused on this issue, and to the generalization of the proposed technique to a particular class of nonlinear systems. Throughout this thesis, we employ two different linearization techniques: the linearization of the error dynamics in the construction of model-based observers [Krener 1983] and the linearization based on restricted state feedback [Brockett 1979]. The former is one of the simplest ways to build an observer for dynamical systems with output and to analyze its convergence. The main idea is to transform the original nonlinear system via a coordinate change to a special form that admits an observer with a linear error dynamics and thus the observer gains can be easily computed to ensure the observer convergence. The latter is a classical method to control nonlinear systems by converting them into a controllable linear state equation via the cancellation of their nonlinearities. It is worth mentioning that existing results for observer design by error linearization in the literature are only applied to the case of regular time scalings ([Guay 2002] and [Respondek 2004]). The thesis shows how to extend them to the case of singular time scalings. Besides, the thesis combines the classical state feedback linearization with a new method for the input delay compensation to resolve the output tracking problem for restricted feedback linearizable systems with input delays.
12

Fault Detection for Rolling Element Bearings Using Model-Based Technique

Simatrang, Sorn 03 September 2015 (has links)
No description available.
13

Algebraische Flachheitsanalyse nichtlinearer Systeme

Fritzsche, Klemens 25 September 2024 (has links)
Die Arbeit beschäftigt sich mit dem systemtheoretischen Konzept der Flachheit: einer Eigenschaft dynamischer Systeme mit großer Bedeutung beim Bewältigen typischer nichtlinearer Regelungs- und Steuerungsprobleme, welche für Systeme verschiedener mathematischer Klassen definiert werden kann. Obwohl sich zahlreiche praktische Beispiele als flach herausgestellt haben und flachheitsbasierte Methoden erfolgreich angewendet werden konnten, ist der Nachweis der Existenz bzw. Nichtexistenz sogenannter flacher Ausgänge ein nach wie vor offenes Problem. Diese als theoretisch ideale Sensorpositionen interpretierbaren rein virtuellen Größen erlauben (vereinfacht ausgedrückt) eine freie Parametrisierung aller Systemgrößen, woraus eine besonders einfache Systemdarstellung möglich wird. Die Planung von Steuerung und Regelung in dieser Darstellung kann dann mit den wohlvertrauten linearen Methoden durchgeführt werden. Darüber hinaus existiert in der Forschungsliteratur das duale Konzept der flachen Eingänge, welches sich aus der im Entwurfsprozess technischer Systeme aufkommenden Frage nach geeigneten Stelleingriffen motivieren lässt. Die Arbeit widmet sich im ersten Teil einer algebraischen Perspektive auf die Flachheitsanalyse, welche eine vereinheitlichte Untersuchung von nichtlinearen zeitkontinuierlichen und zeitdiskreten Systemen ermöglicht. Hierfür wird das Konzept der verallgemeinerten Jacobi-Matrix betrachtet, welche den Matrizen über dem Ring der nichtkommutativen Ore-Polynome entstammt. Der zugehörige mathematische Formalismus wird in den für die Arbeit wichtigsten Zügen untersucht. Aufbauend auf diesem Formalismus wird argumentiert, dass ein verbreiteter Zugang aus der Literatur zur Bestimmung flacher Ausgänge im Kern auf eine dynamische Fassung des Satzes von der Umkehrabbildung zurückgeführt werden kann. Aus dieser Perspektive resultiert, dass die zu prüfende Bedingung nicht als notwendig eingestuft werden kann, womit einige in der Literatur formulierte Ergebnisse zur Diskussion gestellt werden. Ein Beispiel untermauert dies. Dass aus diesem Zugang jedoch keine freie Parametrisierbarkeit der Systemgrößen und damit Flachheit folgen muss, zeigt ein weiteres Beispiel, womit die zu prüfende Bedingung auch nicht hinreichend ist. Da die letztere Problematik nur in seltenen Fällen auftritt, wird unter dem Ausschluss dieser der verallgemeinerte Satz von der Umkehrabbildung dennoch als eine nützliche Grundlage für die Flachheitsanalyse angesehen. Hierfür wird die verallgemeinerte Jacobi-Matrix eines impliziten Systems derart unimodular vervollständigt, dass im Anschluss eine Integrabilitätsbedingung erfüllt ist. Durch Integration entsprechender 1-Formen erhält man schließlich einen flachen Ausgang. In der Arbeit wird ein verallgemeinerter Algorithmus zur Berechnung einer unimodularen Vervollständigung vorgestellt, der neben den zeitdiskreten und zeitkontinuierlichen Zustandssystemen auch für die Analyse von Deskriptorsystemen genutzt werden kann. Der algebraische Ansatz wird außerdem auf die Berechnung flacher Eingänge übertragen, bei der einerseits die Integrabilitätsbedingung aus strukturellen Gründen immer erfüllt ist, andererseits jedoch eine zusätzliche Unimodularitätsbedingung gelten muss. Diese ist den Untersuchungen des Autors nach jedoch nur in seltenen Spezialfällen nicht erfüllt. Der zweite Teil der Arbeit widmet sich der Anwendung flacher Eingänge, die im Vergleich zu flachen Ausgängen in der Literatur bisher nur wenig Aufmerksamkeit erhalten haben. Zum einen wird ein Verfahren vorgestellt, mit dem der Reglerentwurf für nichtlineare nichtbeobachtbare nichtflache zeitkontinuierliche Zustandssysteme gelingen kann. Das den flachen Eingängen nahestehende Konzept der fiktiven Eingänge wird dabei mit einer Regelungsstrategie auf Basis flacher Eingänge in geeigneter Weise miteinander kombiniert. Zur Realisierung des Reglers wird ein dynamischer Kompensator benötigt, der im Allgemeinen jedoch nur zeitlich diskretisiert angegeben werden kann. Ein Beispiel illustriert dieses Vorgehen. Zum anderen wird der Frage nachgegangen, welche Rolle flache Eingänge im Beobachterentwurf spielen, was aus Dualitätsgründen vermutet werden kann. Für zeitkontinuierliche Zustandssysteme wird zunächst der zeitkontinuierliche Normalformbeobachter herangezogen, dessen Anwendbarkeit bekanntermaßen als restriktiv einzustufen ist. Für nichtintegrierbare Systeme, d.h. Systeme für die ein solcher Beobachter nicht existiert, wird ein Verfahren vorgestellt, bei welchem dem System mit Hilfe eines dynamischen Kompensators die Dynamik eines integrierbaren Systems mit flachem Eingang aufgeprägt wird. Für dieses kann anschließend ein Normalformbeobachter konstruiert werden. Aus den geschätzen Größen des integrierbaren Systems wird mit Hilfe einer Zustandstransformation schließlich eine Rekonstruktion des Zustands des ursprünglichen Systems erreicht. Dieses prinzipielle Vorgehen wird auf die Klasse der zeitdiskreten Zustandssysteme und auf die der zeitkontinuierlichen Systeme mit abgetasteten Messgrößen übertragen. Auch diese Methode wird durch Beispiele veranschaulicht.
14

Switched observers and input-delay compensation for anti-lock brake systems / Observateurs commutés et compensation de retard pour les systèmes d’antiblocage des roues

Hoang, Trong bien 04 April 2014 (has links)
Depuis l'introduction du premier système ABS par Bosch, en 1978, de nombreux algorithmes de commande pour les systèmes ABS ont été proposés dans la littérature. En général, ces algorithmes peuvent être divisés en deux catégories : ceux basés sur une logique de régulation déterminée par des seuils sur l'accélération angulaire des roues et ceux basés sur la régulation du taux de glissement. Chaque approche a ses avantages et ses inconvénients. D'une manière simplifiée, on peut dire que le point fort du premier type est sa robustesse ; tandis que ceux du deuxième type sont leur courte distance de freinage (sur les terrains secs) et leur absence de cycles limite. Au milieu de cette dichotomie industrielle/académique, en se basant sur un concept appelé extended braking stiffness (XBS), une classe complètement différente de stratégies de commande pour l'ABS a été proposée par certains chercheurs. Ce concept combine les avantages des deux approches. Néanmoins, puisque l’XBS n'est pas directement mesurable, elle introduit la question de son estimation en temps réel. La première partie de cette thèse est consacrée à l'étude de ce problème d'estimation et à une généralisation de la technique proposée à une plus grande classe de systèmes. D'un point de vue technologique, la conception des systèmes de contrôle pour l'ABS est fortement dépendante des caractéristiques physiques du système et des performances de l'actionneur. Les algorithmes de commande actuels pour l'ABS sur les véhicules, par exemple l'algorithme ABS de Bosch, sont basés sur des approches heuristiques qui sont profondément liées à la nature hydraulique de l'actionneur. Ils ne fonctionnent correctement qu'en présence d'un retard spécifique associé à la nature hydraulique de l'actionneur. Pour les systèmes de freinage qui ont un retard différent de ceux des actionneurs hydrauliques, comme les moteurs-roues électriques par exemple (un retard plus court) ou les freins pneumatiques des semi-remorques (un retard plus grand), ils ne sont plus appropriés et ont un fonctionnement déficient. Par conséquent, l'adaptation des algorithmes standards de l'ABS pour d'autres actionneurs avancés devient un objectif primordial dans l'industrie automobile. Cet objectif peut être atteint par la compensation des retards induits par les actionneurs. La deuxième partie de cette thèse se concentre sur cette question, et à la généralisation de la technique proposée à une classe particulière de systèmes non linéaires.Tout au long de cette thèse, nous utilisons deux techniques de linéarisation différentes : la linéarisation de la dynamique d'erreur dans la construction des observateurs basés sur des modèles et la linéarisation basée sur le retour d'état restreint. La première est l'une des façons les plus simples pour synthétiser un observateur pour des systèmes dynamiques avec sortie et pour analyser sa convergence. L'idée principale est de transformer le système non linéaire original via un changement de coordonnées en un système différemment formalisé, qui admette un observateur avec une dynamique d'erreur linéaire et les gains de l'observateur peuvent donc être facilement calculés pour en assurer la convergence. Cette dernière est une méthode classique pour commander des systèmes non linéaires en les convertissant en une équation d'état linéaire contrôlable via l'annulation de leurs non-linéarités. Il convient de mentionner que les résultats existants pour la synthèse des observateurs par la linéarisation de l'erreur dans la littérature ne sont appliqués que pour le cas des changements réguliers de l'échelle de temps. Cette thèse explique comment les étendre aux cas des changements singuliers de l'échelle de temps. Par ailleurs, la thèse combine la linéarisation classique par retour d'état avec une nouvelle méthode de compensation du retard de l'entrée pour résoudre le problème de suivi de la sortie pour des systèmes linéarisables par retour d'état restreint avec des retards de l'entrée. / Many control algorithms for ABS systems have been proposed in the literature since the introduction of this equipment by Bosch in 1978. In general, one can divide these control algorithms into two different types: those based on a regulation logic with wheel acceleration thresholds that are used by most commercial ABS systems; and those based on wheel slip control that are preferred in the large majority of academic algorithms. Each approach has its pros and cons [Shida 2010]. Oversimplifying, one can say that the strength of the first ones is their robustness; while that of the latter ones their short braking distances (on dry grounds) and their absence of limit cycles. At the midpoint of this industry/academy dichotomy, based on the concept of extended braking stiffness (XBS), a quite different class of ABS control strategies has been proposed by several researchers (see, e.g., [Sugai 1999] and [Ono 2003]). This concept combines the advantages from both the industrial and academic approaches. Nevertheless, since the slope of the tyre characteristic is not directly measurable, it introduces the question of real-time XBS estimation. The first part of this thesis is devoted to the study of this estimation problem and to a generalization of the proposed technique to a larger class of systems. From the technological point of view, the design of ABS control systems is highly dependent on the ABS system characteristics and actuator performance. Current ABS control algorithms on passenger cars, for instance the Bosch ABS algorithm, are based on heuristics that are deeply associated to the hydraulic nature of the actuator. An interesting observation is that they seem to work properly only in the presence of a specific delay coming from the hydraulic actuation [Gerard 2012]. For brake systems that have different delays compared to those of hydraulic actuators, like electric in-wheel motors (with a smaller delay) or pneumatic trailer brakes (with a bigger delay), they might be no longer suitable [Miller 2013]. Therefore, adapting standard ABS algorithms to other advanced actuators becomes an imperative goal in the automobile industry. This goal can be reached by the compensation of the delays induced by actuators. The second part of this thesis is focused on this issue, and to the generalization of the proposed technique to a particular class of nonlinear systems. Throughout this thesis, we employ two different linearization techniques: the linearization of the error dynamics in the construction of model-based observers [Krener 1983] and the linearization based on restricted state feedback [Brockett 1979]. The former is one of the simplest ways to build an observer for dynamical systems with output and to analyze its convergence. The main idea is to transform the original nonlinear system via a coordinate change to a special form that admits an observer with a linear error dynamics and thus the observer gains can be easily computed to ensure the observer convergence. The latter is a classical method to control nonlinear systems by converting them into a controllable linear state equation via the cancellation of their nonlinearities. It is worth mentioning that existing results for observer design by error linearization in the literature are only applied to the case of regular time scalings ([Guay 2002] and [Respondek 2004]). The thesis shows how to extend them to the case of singular time scalings. Besides, the thesis combines the classical state feedback linearization with a new method for the input delay compensation to resolve the output tracking problem for restricted feedback linearizable systems with input delays.
15

On Cooperative Surveillance, Online Trajectory Planning and Observer Based Control

Anisi, David A. January 2009 (has links)
The main body of this thesis consists of six appended papers. In the  first two, different  cooperative surveillance problems are considered. The second two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively.In Papers A and B,  a combinatorial optimization based framework to cooperative surveillance missions using multiple Unmanned Ground Vehicles (UGVs) is proposed. In particular, Paper A  considers the the Minimum Time UGV Surveillance Problem (MTUSP) while Paper B treats the Connectivity Constrained UGV Surveillance Problem (CUSP). The minimum time formulation is the following. Given a set of surveillance UGVs and a polyhedral area, find waypoint-paths for all UGVs such that every point of the area is visible from  a point on a waypoint-path and such that the time for executing the search in parallel is minimized.  The connectivity constrained formulation  extends the MTUSP by additionally requiring the induced information graph to be  kept recurrently connected  at the time instants when the UGVs  perform the surveillance mission.  In these two papers, the NP-hardness of  both these problems are shown and decomposition techniques are proposed that allow us to find an approximative solution efficiently in an algorithmic manner.Paper C addresses the problem of designing a real time, high performance trajectory planner for an aerial vehicle that uses information about terrain and enemy threats, to fly low and avoid radar exposure on the way to a given target. The high-level framework augments Receding Horizon Control (RHC) with a graph based terminal cost that captures the global characteristics of the environment.  An important issue with RHC is to make sure that the greedy, short term optimization does not lead to long term problems, which in our case boils down to two things: not getting into situations where a collision is unavoidable, and making sure that the destination is actually reached. Hence, the main contribution of this paper is to present a trajectory planner with provable safety and task completion properties. Direct methods for trajectory optimization are traditionally based on a priori temporal discretization and collocation methods. In Paper D, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for  online  trajectory optimization are illustrated by a missile guidance example.In Paper E, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotic systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a  unicycle robot model, equipped with a set of range-measuring sensors. Finally, in Paper F, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented  by  a proof  that the region of contraction is infinitely thin. Moreover, assuming a priori bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature. / QC 20100622 / TAIS, AURES
16

Online trajectory planning and observer based control

Anisi, David A. January 2006 (has links)
<p>The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively.</p><p>The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order.</p><p>Direct methods for trajectory optimization are traditionally based on<i> a</i> <i>priori </i>temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example.</p><p>In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors.</p><p>Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming <i>a</i> <i>priori </i>bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature.</p>
17

Online trajectory planning and observer based control

Anisi, David A. January 2006 (has links)
The main body of this thesis consists of four appended papers. The first two consider different aspects of the trajectory planning problem, while the last two deal with observer design for mobile robotic and Euler-Lagrange systems respectively. The first paper addresses the problem of designing a real time, high performance trajectory planner for aerial vehicles. The main contribution is two-fold. Firstly, by augmenting a novel safety maneuver at the end of the planned trajectory, this paper extends previous results by having provable safety properties in a 3D setting. Secondly, assuming initial feasibility, the planning method is shown to have finite time task completion. Moreover, in the second part of the paper, the problem of simultaneous arrival of multiple aerial vehicles is considered. By using a time-scale separation principle, one is able to adopt standard Laplacian control to this consensus problem, which is neither unconstrained, nor first order. Direct methods for trajectory optimization are traditionally based on a priori temporal discretization and collocation methods. In the second paper, the problem of adaptive node distribution is formulated as a constrained optimization problem, which is to be included in the underlying nonlinear mathematical programming problem. The benefits of utilizing the suggested method for online trajectory optimization are illustrated by a missile guidance example. In the third paper, the problem of active observer design for an important class of non-uniformly observable systems, namely mobile robotics systems, is considered. The set of feasible configurations and the set of output flow equivalent states are defined. It is shown that the inter-relation between these two sets may serve as the basis for design of active observers. The proposed observer design methodology is illustrated by considering a unicycle robot model, equipped with a set of range-measuring sensors. Finally, in the fourth paper, a geometrically intrinsic observer for Euler-Lagrange systems is defined and analyzed. This observer is a generalization of the observer recently proposed by Aghannan and Rouchon. Their contractivity result is reproduced and complemented by a proof that the region of contraction is infinitely thin. However, assuming a priori bounds on the velocities, convergence of the observer is shown by means of Lyapunov's direct method in the case of configuration manifolds with constant curvature. / QC 20101108

Page generated in 0.0263 seconds