• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessment of Prolonged Occupational Exposure to Heat Stress

Garzon-Villalba, Ximena Garzon-Villalba 30 June 2016 (has links)
Heat stress is a recognized occupational hazard present in many work environments. Its effects increase with increasing environmental heat loads. There is good evidence that exertional heat illness is associated with ambient thermal conditions in outdoor environments. Further, there is reason to believe that risk of acute injury may also increase with the ambient environment. For these reasons, the assessment of heat stress, which can be done through the characterization of the wet bulb globe temperature (WBGT), is designed to limit exposures to those that could be sustained for an 8-h day. The ACGIH Threshold Limit Value (TLV) for heat stress was based on limited data from Lind in the 1960s. Because there are practical limitations of using thermal indices, measurement of physiological parameters, such as body temperature and heart rate are used with environmental indices or as their alternative. The illness and injury records from the Deepwater Horizon cleanup effort provided an opportunity to examine the effects of ambient thermal conditions on exertional heat illness and acute injury, and also the cumulative effect of the previous day’s environmental conditions. The ability of the current WBGT-based occupational exposure limits to discriminate unsustainable heat exposures, and the proposal of alternative occupational limits was performed on data from two progressive heat stress protocol trials performed at USF. The USF studies also provided the opportunity to explore physiological strain indicators (rectal temperature, heart rate, skin temperature and the Physiological Strain Index) to determine the threshold between unsustainable and sustainable heat exposures. Analysis were performed using Poisson models, conditional logistic regressions, logistic regressions, and receiver operator curves (ROC curves). It was found that the odds to present an acute event, either exertional heat illness or acute injuries increased significantly with rising environmental conditions above 20 °C (RR 1.40 and RR 1.06, respectively). There was evidence of the cumulative effect from the prior day’s temperature and increased risk of exertional heat illness (RRs from 1.0–10.4). Regarding the accuracy of the current TLV, the results of the present investigation showed that this occupational exposure limit is extremely sensitive to predict cases associated with unsustainable heat exposures, its area under the curve (AUC) was 0.85; however its specificity was very low (specificity=0.05), with a huge percentage of false positives (95%). The suggested alternative models improved the specificity of the occupational exposure limits (specificities from 0.36 to 0.50), maintaining large AUCs (between 0.84 and 0.89). Nevertheless, any decision in trading sensitivity for specificity must be taken with extreme caution because of the steeped increment risk of heat related illness associated with small increments in environmental heat found also in the present study. Physiologic heat strain indices were found as accurate predictors for unsustainable heat stress exposures (AUCs from 0.74 to 0.89), especially when measurements of heart rate and skin temperature are combined (AUC=0.89 with a specificity of 0.56 at a sensitivity=0.95). Their implementation in industrial settings seems to be practical to prevent unsustainable heat stress conditions.
2

Emerging Exposure Issues in Inhalation Toxicology

Li Xia (15355489) 29 April 2023 (has links)
<p>  </p> <p>Inhalation is a primary route of environmental and occupational exposures. Inhalation toxicology studies have thoroughly demonstrated the efficacy and adverse effects of a large number of chemicals, metals, pharmaceuticals, and agrochemicals. With the rapid development of new technologies and emergence of prominent subpopulations, some emerging exposure issues have arisen. To better protect public health, it is necessary to address these numerous emerging issues related to inhalation toxicology including 1) exposures to complex and unknown chemical emissions generated as we resolve infrastructure needs, 2) real-world exposure scenarios such as nanoparticle (NP) mixtures that may induce unique toxicity, and 3) variations in toxicity responses that occur in vulnerable and prevalent subpopulations following exposures. We designed three aims 1) to characterize differential representative composite manufacturing emissions (CMEs) and toxicity assessment of inhalation exposure to CMEs, 2) to examine the contribution of variable iron and manganese NP components in welding fumes to pulmonary toxicity, and 3) to evaluate metabolic syndrome (MetS)-induced variations in NP-Biocorona (NP-BC) composition following inhalation and modulation of pulmonary toxicity. Overall, this proposal aimed to characterize the emerging and complex exposures occurring in the real world and elucidate the mechanisms of differential pulmonary toxicity and susceptibility associated with CMEs, different metal NP components in welding fumes, and underlying diseases such as MetS. The conclusions from this project can help to improve the application of water infrastructure repairing technology and the utilization of welding and understand the mechanism of susceptibility to NP exposure among individuals with underlying diseases. Furthermore, the findings from these evaluations have supported and improved worldwide regulation, which promotes a safer utilization of novel materials, newly developed medicines, and complex chemicals.</p>

Page generated in 0.0139 seconds