• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Over-current relay model implementation for real time simulation & Hardware-in-the-Loop (HIL) validation

Almas, Muhammad Shoaib, Leelaruji, Rujiroj, Vanfretti, Luigi January 2012 (has links)
Digital microprocessor based relays are currently being utilized for safe, reliable and efficient operation of power systems. The overcurrent protection relay is the most extensively used component to safeguard power systems from the detrimental effects of faults. Wrong settings in overcurrent relay parameters can lead to false tripping or even bypassing fault conditions which can lead to a catastrophe. Therefore it is important to validate the settings of power protection equipment and to confirm its performance when subject to different fault conditions. This paper presents the modeling of an overcurrent relay in SimPowerSystems (\textsc {matlab}/Simulink). The overcurrent relay has the features of instantaneous, time definite and inverse  definite minimum time (IDMT) characteristics. A power system is modeled in SimPowerSystems and this overcurrent relay model is incorporated in the test case. The overall model is then simulated in real-time using Opal-RT's eMEGAsim real-time simulator to analyze the relay's performance when subjected to faults and with different characteristic settings in the relay model. Finally Hardware-in-the-Loop validation of the model is done by using the overcurrent protection feature in Schweitzer Engineering Laboratories Relay SEL-487E. The event reports generated by the SEL relays during Hardware-in-the-Loop testing are compared with the results obtained from the standalone testing and software model to validate the model. / <p>QC 20130215</p>
2

Real-Time Simulation of a Smart Inverter

January 2017 (has links)
abstract: With the increasing penetration of Photovoltaic inverters, there is a necessity for recent PV inverters to have smart grid support features for increased power system reliability and security. The grid support features include voltage support, active and reactive power control. These support features mean that inverters should have bidirectional power and communication capabilities. The inverter should be able to communicate with the grid utility and other inverter modules. This thesis studies the real time simulation of smart inverters using PLECS Real Time Box. The real time simulation is performed as a Controller Hardware in the Loop (CHIL) real time simulation. In this thesis, the power stage of the smart inverter is emulated in the PLECS Real Time Box and the controller stage of the inverter is programmed in the Digital Signal Processor (DSP) connected to the real time box. The power stage emulated in the real time box and the controller implemented in the DSP form a closed loop smart inverter. This smart inverter, with power stage and controller together, is then connected to an OPAL-RT simulator which emulates the power distribution system of the Arizona State University Poly campus. The smart inverter then sends and receives commands to supply power and support the grid. The results of the smart inverter with the PLECS Real time box and the smart inverter connected to an emulated distribution system are discussed under various conditions based on the commands received by the smart inverter. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2017
3

Feeder Dynamic Rating Application for Active Distribution Networks using Synchrophasors

Singh, Narender January 2016 (has links)
There is an ever increasing demand of electricity and to meet this demand, installation of new transmission and distribution lines is required. This task requires a significant investment and consent from the respective authorities. An alternative is to utilize maximum capability of the existing lines. Static line ratings are based on a conservative estimate, which means that on most occasions, the actual capacity of lines is much higher than the static line ratings. In order to provide a solution to this problem, this thesis introduces an approach that has been developed to utilize real time weather conditions, conductor sag data and the actual line loading of the conductor from PMU to provide dynamic line ratings for active distribution networks. The application has been developed in LabVIEW environment which provides a user friendly front panel where real-time ampacity can be seen as a waveform while being compared to the actual line loading.  The developed application has been tested on the reference grid created for IDE4L project. The ampacity calculation method introduced here makes use of real-time data available through a real-time simulator in SmarTS lab at KTH, Sweden. / Det är ett ökande behov av elektricitet och för att möta detta behövet, installation av nya transmission och distributionsledningar behövs. Denna utbyggnad kräver ett stort engagemang och förståelse från ansvariga grupper. Ett alternativ är att utnyttja max-kapaciteten på redan befintliga ledningar. Installerade ledningar har räknats på ett konservativt sätt, vilket innebär att det vid vissa tillfällen går att öka belastingen på på dessa. För att ge en lösning på detta problem, introducerar den här avhandlingen en metod för att använda realtids-väderdata, tabeller för ledningarnas utvidgning och realtids-belastningsdata från PMU för att framställa dynamisk data för aktiva distributions-nätverk. Applikationen har utvecklas i LabVIEW-miljön som har ett användarvänligt GUI, där “Real-time ampacity” kan ses som en vågform medans den jämförs mot den faktiska belastningen på ledningen.  Den utvecklade appliktionen har testats på referens-miljön som skapts för IDE4L projektet. “Ampacity calculation metoden” som introduceras här använder sig av realtidsdata som görs tillgänglig igenom en realtids-simulator i SmarTSlab på Kungliga Tekniska Högskolan i Sverige.
4

Implémentation et réalisation d'un amplificateur de puissance quatre quadrants

Abida, Ahmed January 2021 (has links) (PDF)
No description available.

Page generated in 0.169 seconds