• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Over-current relay model implementation for real time simulation & Hardware-in-the-Loop (HIL) validation

Almas, Muhammad Shoaib, Leelaruji, Rujiroj, Vanfretti, Luigi January 2012 (has links)
Digital microprocessor based relays are currently being utilized for safe, reliable and efficient operation of power systems. The overcurrent protection relay is the most extensively used component to safeguard power systems from the detrimental effects of faults. Wrong settings in overcurrent relay parameters can lead to false tripping or even bypassing fault conditions which can lead to a catastrophe. Therefore it is important to validate the settings of power protection equipment and to confirm its performance when subject to different fault conditions. This paper presents the modeling of an overcurrent relay in SimPowerSystems (\textsc {matlab}/Simulink). The overcurrent relay has the features of instantaneous, time definite and inverse  definite minimum time (IDMT) characteristics. A power system is modeled in SimPowerSystems and this overcurrent relay model is incorporated in the test case. The overall model is then simulated in real-time using Opal-RT's eMEGAsim real-time simulator to analyze the relay's performance when subjected to faults and with different characteristic settings in the relay model. Finally Hardware-in-the-Loop validation of the model is done by using the overcurrent protection feature in Schweitzer Engineering Laboratories Relay SEL-487E. The event reports generated by the SEL relays during Hardware-in-the-Loop testing are compared with the results obtained from the standalone testing and software model to validate the model. / <p>QC 20130215</p>
2

Simulation and Testing of Energy Efficient Hydromechanical Drivlines for Construction Equipment

Larsson, Viktor, Larsson, L. Viktor January 2014 (has links)
Increased oil prices and environmental issues have increased a need of loweringthe emissions from and the fuel consumption in heavy construction machines. Anatural solution to these issues is a lowered input power through downsizing ofthe engine. This implies a demand on higher transmission efficiency, in order tominimize the intrusion on vehicle performance. More specifically, alternatives tothe conventional torque converter found in heavier applications today, must beinvestigated. One important part of this is the task of controlling the transmissionwithout jeopardising the advantages associated with the torque converter, such asrobustness and controllability.In this thesis, an alternative transmission concept for a backhoe loader is investigated.The studied concept is referred to as a 2-mode Jarchow power-splittransmission, where a mechanical path is added to a hydrostatic transmission inorder to increase transmission efficiency. The concept is evaluated in computerbased simulations as well as in hardware-in-the-loop simulations, where a physicalhydrostatic transmission is exposed for the loads caused by the vehicle duringvarying conditions. The loads are in turn simulated according to developed modelsof the mechanical parts of the vehicle drive line.In total, the investigated concept can be used instead of the torque converterconcept, if the hydrostatic transmission is properly controlled. The results alsoshow that there is a high possibility that the combustion engine in the backhoeloader can be downsized from 64 kW to 55 kW, which would further increase thefuel savings and reduce the emissions.

Page generated in 0.0382 seconds