• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 21
  • 6
  • 1
  • Tagged with
  • 67
  • 19
  • 18
  • 18
  • 17
  • 16
  • 11
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural and magmatic history of upper mantle peridotites in the Bay of Islands complex, Newfoundland /

Suhr, Günter, January 1991 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland. / Typescript. 3 fold. maps in pocket. Bibliography: leaves 267-296. Also available online.
22

The Chemical Evolution of Continental and Oceanic Lithosphere: Case Studies in the US Cordillera

Jean, Marlon Mauricio 01 August 2012 (has links)
Investigations into ophiolite from California demonstrated that these ultramafic rocks formed within the mantle wedge of a subduction zone. Fore-arc locales are dominated by highly refractory peridotite, formed by hydrous-fractional partial melting that began in the garnet stability field and ended in the spinel stability field. These ophiolites also displayed enriched fluid-mobile element concentrations. Based on melt models, these elements should have extremely low concentrations, yet all pyroxenes display enriched compositions. A new algorithm was derived to model this fluid enrichment process, which represents the total addition of material to the mantle wedge source region and can be applied to any refractory mantle peridotite that has been modified by melt extraction and/or metasomatism. Investigations into the interaction of a mantle plume with continental lithosphere demonstrated that Yellowstone-Snake River Plain olivine tholeiites are compatible with genesis from a deep-seated mantle plume and were modeled via mixing of three components. The variable age, thickness, and composition of North American lithosphere guide this process. Drill core near Twin Falls, ID was examined to assess (1) the chemical evolution of olivine tholeiite, (2) how basalt evolves in continental settings, and (3) the dominant fractionation process, e.g., fractional crystallization, Raleigh fractional crystallization, or assimilation fractional crystallization.
23

Geochemistry, structure, and tectonic evolution of the Eldivan ophiolite, Ankara Melange, central Turkey

Dangerfield, Anne 17 June 2008 (has links) (PDF)
The Eldivan ophiolite, in the Ankara Mélange, represents the remnant of an ocean basin that developed in the İzmir-Ankara-Erzincan Ocean and collapsed the form the İzmir -Ankara-Erzincan suture zone (İAESZ) through continental block collision. Whole-rock and mineral geochemical evidence show supra-subduction zone tectonomagmatic affinity for the ophiolite, revealing this basin formed in the upper plate of an intra-oceanic subduction zone. Detrital zircon from the ophiolitic mélange sandstone and the overlying Karadağ Formation suggest the ophiolites maximum age is 143.2 (±2) Ma, and the overlying Karadağ Formation is 105.2 (±5) Ma. The angular unconformity between the ophiolite and Karadağ formation reveal that the Eldivan ophiolite was imbricated between 105.2 (±5) Ma and 143.2 (±2) Ma. Petrographic analysis of sandstone from the ophiolitic mélange reveals a source terrain of a volcanic arc rather than a continental source. Structural restoration of the sheeted dike complex reveals the back or intra-arc spreading ridge of the Eldivan ophiolite as NE-SW, oblique to the Sakarya-Pontide continental margin. Three phases of evolution for the Eldivan ophiolite are constrained by complied age data: a constructional, destructional, and suturing phase. The evolution is similar the Philippine Sea Plate and Mariana Trough and fits well within the framework of other eastern Mediterranean Tethyan ophiolites.
24

STRUCTURE AND TECTONICS OF A SUBOPHILITIC MÉLANGE (ZAVORDAS MÉLANGE) OF THE VOURINOS OPHIOLITE (GREECE) AND KINEMATICS OF OPHIOLITE EMPLACEMENT

Ghikas, Constandina Anastasios 31 May 2007 (has links)
No description available.
25

Spatial Biostratigraphy of NW Pakistan

Shafique, Naseer Ahmed 11 October 2001 (has links)
No description available.
26

An Investigation of AMS in Oman Ophiolite Gabbros

Trutner, Sarah D. 12 August 2016 (has links)
No description available.
27

(Dé)formation d'un coin mantellique en initiation de subduction : étude intégrée de la base mantellique de l'ophiolite d'Oman / (De)formation of a mantle wedge during subduction infancy : evidence from the basal part of the Oman ophiolite

Prigent, Cécile 23 January 2017 (has links)
Les processus affectant le coin mantellique situé au-dessus d’une zone de subduction (déformation et interaction avec les fluides/liquides magmatiques libérés par la plaque inférieure) ont des implications importantes sur la dynamique de la subduction et le budget géochimique global de la Terre.Afin de mieux contraindre ces processus, ma thèse a porté sur l’étude de l’unité rubanée de l’ophiolite du Semail. Cette unité de 200-500m d’épaisseur s’est (dé)formée, juste au-dessus de l’interface interplaque, pendant l’initiation de la subduction ou du chevauchement intra-océanique (qui a mené, à terme, à l’obduction de l’ophiolite). Elle est en effet située au-dessus de la semelle métamorphique HT (amphibolites à granulites ; 750-850°C et 0.9-1.1GPa) interprétée comme des écailles de la plaque inférieure métamorphisées et sous-plaquées à la plaque supérieure (actuelle ophiolite) lors des premiers stades de la convergence.Après une caractérisation structurale de terrain de cette unité rubanée et la collecte de plus de200 échantillons tout le long de l’ophiolite, j’ai mené une analyse intégrée (Microscopie optique, MEB, microsonde, EBSD, (LA-)ICPMS) sur une sélection d’entre-eux, afin de caractériser l’évolution P-T, pétrologique, géochimique et structurale des péridotites de l’unité rubanée pendant cet épisode de déformation.Les résultats montrent que cette déformation a mené à la formation de zones de cisaillement (proto)mylonitiques (~850-750°C) puis ultramylonitiques (~750-650°C) et que cette déformation BT s’est faite en décompression (d’~3kbar, i.e. 10km). Les résultats pétrologiques indiquent que des fluides silicatés hydratés ont percolé à travers (et intéragi avec) ces péridotites pendant cette déformation. Ces processus d’interaction ont mené à (1) la précipitation de minéraux métasomatiques (Ol+Opx+Cpx+Spl+Amp±Sulf), et (2) l’enrichissement des phases en éléments mobiles dans les fluides (surtout B, Li et Cs :concentrations de 1 à 40 fois celles du manteau primitif).L’analyse des isotopes du bore (δ11B des péridotites métasomatisées jusqu’à +25‰) démontre que ces fluides ont une signature de subduction et qu’ils sont vraisemblablement issus de la déshydratation de la semelle HT lors de sa formation à 750-850°C.En combinant ces résultats avec une analyse microstructurale, j’ai ensuite étudié les mécanismes et les rétroactions entre la circulation de ces fluides, la déformation des péridotites et la localisation de cette déformation. A l’échelle macroscopique, on observe une focalisation des fluides dans les zones de cisaillement actives, associée à une localisation progressive de la déformation.Nous avons aussi exploré les conséquences rhéologiques de l’hydratation de ce manteau sur le régime, couplé ou découplé, de l’interface. Les lois rhéologiques indiquent que l’affaiblissement des (proto)mylonites de l’unité rubanée, par hydratation, peut expliquer le couplage de l’interface de subduction à 850-750°C et, ainsi, l’accrétion de la semelle HT. Nous interprétons les zones de cisaillement ultramylonitiques ultérieures (~750-650°C) comme étant liées au stade d’exhumation simultanée de l’unité rubanée et de la semelle HT d’environ 10km au-dessus de l’interface, jusqu’à leur position actuelle sous l’ophiolite.Les résultats de cette étude suggèrent donc que l’interface semelle HT/unité rubanée représente une interface de subduction fossilisée et le manteau (proto)mylonitique sus-jacent, un coin mantellique qui s’est (dé)formé et a intéragi avec des fluides de subduction pendant l’initiation de la subduction. L’unité rubanée de l’ophiolite du Semail représente donc un des rares objets géologiques permettant d’étudier les processus à l’oeuvre dans un coin mantellique, et d’en traquer, avant sa fossilisation, les transformations mécaniques et chimiques sur ~1 million d’années. / The processes affecting the mantle wedge atop a subduction zone (deformation and interaction with fluids/melts released by the downgoing plate) play a major role on subduction zones dynamics and the global geochemical budget of the Earth.To better constrain these processes, my Ph.D. research project has focused on studying the basal banded unit of the Semail ophiolite. This 200-500m thick peridotitic basal unit was (de)formed, directly above the interplate interface, during the intra-oceanic subduction (or underthrusting) initiation (that ultimately led to the ophiolite obduction). The banded unit indeed overlies the HT metamorphic sole (amphibolites to granulites ; 750-850°C and 0.9-1.1GPa) interpreted as slices of the downgoing plate underplated to the upper plate (the ophiolite) during early subduction (or subduction "infancy").After a field-based structural characterization of this banded unit and more than 200 samples collected all along the strike of the ophiolite, I carried out an integrated analysis (Optical microscopy, SEM, microprobe, EBSD, (LA-)ICPMS) on selected samples, in order to constrain the P-T, petrological, geochemical and structural evolution of the banded unit peridotites during this deformation event.Our results show that this deformation led to the formation of (proto)mylonitic (at ~850-750°C) then ultramylonitic (at ~750-650°C) shear zones and that this deformation was associated with peridotites decompression (of ~3kbar, i.e. 10km). Petrological results suggest that hydrated silicate fluids have percolated through (and interacted with) these peridotites during their deformation. These interaction processes triggered (1) the precipitation of metasomatic minerals (Ol+Opx+Cpx+Spl+Amp±Sulf), and (2) the enrichment of phases in fluid mobile elements (parti- cularly B, Li and Cs;concentrations from 1 to 40 times higher than those of the primitive mantle).The analysis of boron isotopes (δ11B of metasomatized peridotites up to +25‰) demonstrated that these fluids had a "subduction signature" and that they presumably derived from HT sole dehydration while forming at 850-750°C.By combining these results with microstructural analyses, I then studied the mechanisms and feedbacks between the circulation of these fluids, peridotites ductile deformation and strain localization. At the macroscopic scale, we observe a focusing of fluids in actively deforming peridotites associated to progressive strain localization during peridotites cooling.We also investigated the rheological consequences of banded unit peridotites hydration on the regime (coupled or decoupled) of the interface. Rheological laws indicate that the hydration-related weakening of banded unit (proto)mylonites is able to explain the coupling of the subduction inter- face at 850-750°C and, thereby, HT sole slicing and accretion. We interpret the later development of the ultramylonitic shear zones (at ~750-650°C) as being associated to the subsequent exhumation stage, i.e. the coeval exhumation of the banded unit and the HT metamorphic sole over around10km along the interface, up to their present-day position under the ophiolite.The results of this work suggest that the HT sole/banded unit contact represents a fossilized subduction interface and the overlying (proto)mylonitic mantle, a frozen-in mantle wedge that was (de)formed and interacted with subduction fluids during subduction infancy. The Semail ophiolite banded unit therefore provides a rare glimpse of processes affecting a mantle wedge, and enables tracking its mechanical and geochemical transformations over 1My (prior to its fossilization).The processes highlighted in this Ph.D. research project thus bring new constraints on the (petrological-geochemical-rheological) consequences of mantle wedge peridotites interaction with subduction fluids.
28

Mise en place et chimie des magmas dans le manteau supérieur de l'ophiolite d'Oman / Emplacement and geochemistry of magmas in the upper mantle section of the Oman ophiolite

Nicolle, Marie 21 February 2014 (has links)
L'ophiolite d'Oman permet d'observer les roches mantelliques inaccessibles aux dorsales. Avec cinq diapirs à l'axe (dont Maqsad) et un diapir hors-axe (Mansah), elle permet d'étudier les processus magmatiques en jeu dans les diapirs au niveau de la Zone de Transition au Moho, qui est différente entre les deux types de diapirs avec hors-axe des pyroxénites dans la dunite à la place de gabbros lités à l'axe. Le diapir de Mansah est entouré d'intrusions gabbroïques dans le manteau et la croûte. Les roches hors-axe ont des valeurs d'εNd plus faibles que celles à l'axe qui ont des compositions similaires aux MORB, suggérant une source des liquides plus riche en veines de pyroxénite hors-axe. Les εNd montrent aussi que les pyroxénites et les intrusions gabbroïques sont une suite magmatique. L'abondance de clinopyroxenes hors-axe provient de la réaction entre des liquides provenant de la fusion de veines de pyroxénites avec la harzburgite appauvrie de la lithosphère, ce qui donne à ces clinopyroxènes des compositions appauvries en éléments traces. La présence d'eau provenant de la lithosphère hydratée favorise la cristallisation de ces clinopyroxènes à la place du plagioclase qui doit normalement apparaître à cette profondeur dans la MTZ, ce qui est le cas à l'axe. Le diapir hors-axe pourrait fournir une analogie aux seamounts que l'on trouve actuellement à proximité des dorsales rapides et faire la lumière sur les interactions entre la lithosphère appauvrie et le matériel ascendant hors-axe, ainsi que sur les structures internes de ces seamounts. Ce travail offre des évidences probantes pour l'existence de veines de pyroxénites dans le manteau asthénosphérique sous les dorsales / The Oman ophiolite offers the possibility to study mantle rocks which are inaccessible at mid-ocean ridges. The presence of five on-axis diapirs and an off-axis diapir allows comparison of magmatic processes occurring in these different settings. The Moho Transition Zone is dominated by dunite in both cases, but off-axis includes massive pyroxenites instead of layered gabbro. The off-axis diapir is surrounded by gabbroic intrusions in the crust and mantle, which are not found elsewhere in the ophiolite. While the on-axis samples have εNd values similar to those of MORB, all of the off-axis rocks have less radiogenic Nd suggesting a larger contribution from melting of pyroxenite veins in the off-axis source. The abundance of clinopyroxene in the off-axis MTZ results from the reaction between the pyroxenite-derived melts and the depleted harzburgite of the lithosphere, which explains the highly depleted incompatible trace element compositions of the clinopyroxenes. The presence of water from the hydrated lithosphere favors the crystallization of clinopyroxene instead of plagioclase, which should normally appear at this depth in the MTZ, as is the case on-axis. The gabbroic intrusions in the mantle and crust surrounding the off-axis diapir crystallized from the residual magma produced by the interaction between the pyroxenite-derived melts and the harzburgite. The off-axis diapir could be viewed as an analog to seamounts currently found near fast-spreading ridges, and could provide information on their internal structure. More generally, this study provides compelling evidence for the existence of pyroxenite veins in the asthenospheric mantle beneath mid-ocean ridges
29

Evolução petrogenética e geotectônica do Ofiolito Arroio Grande, SE do Cinturão Dom Feliciano (Brasil)

Ramos, Rodrigo Chaves January 2018 (has links)
O Ofiolito Arroio Grande, localizado no sudeste do Cinturão Dom Feliciano, próximo à fronteira Brasil/Uruguai, entre Arroio Grande e Jaguarão (RS), é uma associação metaultramáfica-máfica-sedimentar que representa fragmentos de uma mélange ofiolítica, relacionada à amalgamação do paleocontinente Gondwana Ocidental durante os estágios finais do ciclo orogênico Brasiliano-Panafricano. As rochas do Ofiolito Arroio Grande se encontram circundadas por rochas metassiliciclásticas do Complexo Arroio Grande, do qual o ofiolito faz parte, e também como xenólitos em meio a granitoides da Suíte Pinheiro Machado e do Granito Três Figueiras (os quais integram o Batólito Pelotas-Aiguá). A unidade metaultramáfica do ofiolito compreende serpentinitos e xistos magnesianos cromíferos. Sua unidade metamáfica é constituída por anfibolitos, metagabros e metadioritos. A unidade metassedimentar compreende mármores calcíticos, intrudidos por enxame de diques máficos. O Ofiolito Arroio Grande está posicionado ao longo da Zona de Cisalhamento Ayrosa Galvão-Arroio Grande (transcorrente, dúctil, alto ângulo), responsável pela milonitização da maioria das rochas dessa associação. As investigações desenvolvidas no ofiolito tiveram o objetivo de identificar as fontes magmáticas dos protólitos e os processos que ocorreram desde sua geração no manto/crosta oceânica até sua incorporação no continente, além de obter idades (absolutas e relativas) referentes a esses processos. Para os metaultramafitos, a geoquímica de rocha total (e.g. Ni >1000 ppm; Cr > 1500 ppm), em conjunto com a química mineral de cromitas (e.g. Cr# 0,6-0,8; TiO2 0,01-0,20 %peso; Fe2+/Fe3+ ± 0,9), sugeriu protólitos harzburgíticos mantélicos, cuja fonte é um manto depletado sob uma região de espalhamento oceânico de retroarco, que experimentou altas taxas de fusão parcial. Esses harzburgitos foram posteriormente serpentinizados em ambiente oceânico, sugerido pelas razões 87Sr/86Sr630 de um serpentinito (ca. 0,707). Para os metamafitos, a geoquímica de rocha total e isotópica sugeriram protólitos toleíticos oceânicos, gerados em um contexto de suprassubducção em ambiente de retroarco (e.g. Cr 260-600 ppm; Nb/Y 0,1-0,5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0,1-5 e Nb/Yb 1-5; padrões de REE; razões 87Sr/86Sr630 variando de MORB – 0,703 – a IAT – 0,705-0,707), cuja fonte magmática foi enriquecida por material crustal e fluidos relacionados à subducção. A idade mínima para a obducção e metamorfismo das unidades ofiolíticas foi estimada em 640 Ma, a partir da datação (U-Pb SHRIMP) de um quartzo sienito. Esse último é o resultado de fusões relacionadas a intrusões diorítico-tonalíticas, atribuídas ao magmatismo de arco continental da Suíte Pinheiro Machado. Essas intrusões afetaram os mármores e os anfibolitos (fragmentos dos enxames de diques máficos), de maneira que, em pelo menos 640 Ma, rochas da mélange ofiolítica (já metamorfizadas) estavam alojadas em ambiente continental. Um evento metassomático posterior (relacionado à intrusão do Granito Três Figueiras, sincinemática à zona de cisalhamento acima referida) afetou os serpentinitos, gerando zonas de talcificação, tremolitização e cloritização, essa última representando um blackwall que também envolveu unidades metassiliciclásticas do Complexo Arroio Grande. O Ofiolito Arroio Grande foi inserido no contexto geotectônico da bacia de retroarco Marmora, cujos fragmentos são encontrados na Namíbia (Terreno Marmora) e no Uruguai (Complexo Paso del Dragón e Bacia Rocha – Terreno Punta del Este). / The Arroio Grande Ophiolite, located in the southeastern region of the Dom Feliciano Belt, near the Brazil/Uruguay border, is a metaultramafic-mafic-sedimentary association which represents slices of an ophiolitic mélange, related to the Western Gondwana amalgamation during the late stages of the Brasiliano-Panafrican orogenic cycle. The Arroio Grande Ophiolite rocks are enveloped by metasiliciclastic units of the Arroio Grande Complex and occur as xenolyths within granitoids of the Pinheiro Machado Suite and within the Três Figueiras Granite (units of the Pelotas-Aiguá Batholith). The metaultramafites of the ophiolite comprise serpentinites and Cr-rich magnesian schists. The metamafites comprise amphibolites, metagabbros and metadiorites. The metasedimentary unit comprises calcitic marbles, which are intruded by mafic dykes. The ophiolite is found along the Ayrosa Galvão- Arroio Grande Shear Zone (transcurrent, ductile, high angle), responsible for the mylonitization of this association. The investigations developed in this ophiolite had the objective of identify the magmatic sources of the protoliths and the processes that occurred since their generation within the mantle/oceanic crust until their incorporation into the continental crust, including their absolute and relative ages. The bulk-rock chemistry of the metaultramafites (e.g. Ni >1000 ppm; Cr > 1500 ppm), together with the mineral chemistry of the chromites (e.g. Cr# 0.6-0.8; TiO2 0.01-0.20 wt%; Fe2+/Fe3+ ± 0.9), suggested harzburgitic protoliths, attributed to a depleted mantle source under a back-arc spreading region, which experienced high degrees of partial melting. These harzburgites were serpentinized in an oceanic setting, as suggested by the 87Sr/86Sr630 ratio of a serpentinite (ca. 0.707). The bulkrock chemistry of the metamafites suggested oceanic tholeiitic protoliths, generated in a supra-subduction setting in a back-arc environment (e.g. Cr 260-600 ppm; Nb/Y 0.1-0.5; Ti/Y ± 500; La/Nb 2-5; Th/Yb 0.1-5 and Nb/Yb 1-5; REE patterns; 87Sr/86Sr630 ratios ranging from MORB – 0.703 – to IAT – 0.705-0.707), whose magmatic source was contaminated by crustal material and subduction-related fluids. The minimum age for the obduction and metamorphism of the Arroio Grande Ophiolite rocks was estimated around 640 Ma from the U-Pb age of a quartz-syenite. The latter is the result of melting, related to dioritic-tonalitc intrusions, attributed to the continental magmatism of the Pinheiro Machado Suite. These intrusions affected both the marbles and the amphibolites (fragments of the mafic dykes), in order that, at least around 640 Ma, rocks of the ophiolitic mélange (already metamorphosed) were emplaced on the continent. A late metasomatic event (related to the emplacement of the Três Figueiras Granite, syn-kinematic to the abovementioned shear zone) affected the serpentinites, generating zones of talcification, tremolitization and chloritization, the latter representing a blackwall which also involved metasiliciclastic rocks of the Arroio Grande Complex. The Arroio Grande Ophiolite was inserted in the geotectonic context of the Marmora back-arc basin, whose fragments are found in Namibia (Marmora Terrane) and Uruguay (Paso del Dragón Complex and Rocha Basin – Punta del Este Terrane).
30

Provenance-related studies of Triassic-Miocene Tethyan sedimentary and igneous rocks from Cyprus

Chen, Guohui January 2018 (has links)
Cyprus comprises three tectono-stratigraphic terranes: first, the Troodos Massif made up of Late Cretaceous oceanic lithosphere and its sedimentary cover in the centre of the island; secondly, the Mamonia Complex (and Moni Melange) a passive margin lithological assemblage in the west (and south) and thirdly, the Kyrenia Range, an active margin lithological assemblage in the north. This study focuses on the sedimentary cover of the Troodos Ophiolite in W Cyprus, the Triassic-Cretaceous sedimentary rocks of the Mamonia Complex and Late Cretaceous-Miocene igneous and sedimentary rocks in the Kyrenia Range, mainly based on combined sedimentology, geochemistry and geochronological dating. The Late Triassic-Early Cretaceous Mamonia Complex, SW Cyprus (and the Moni Melange, S Cyprus) represent parts of the emplaced passive continental margin of the S Neotethys. Late Triassic sandstones are characterised by a predominantly felsic source, with a subordinate mafic contribution. Jurassic-Early Cretaceous sandstones have a polycyclic felsic origin. Geochemical analyses are suggestive of progressive weathering and sediment recycling/sorting. The dominance of Ediacaran-Cryogenian and Tonian-Stenian-aged detrital zircon populations is suggestive of an ultimate north Gondwana source, probably recycled from Palaeozoic siliciclastic sedimentary rocks within Anatolia to the north. Similar detrital zircon populations characterise Early Cretaceous deltaic sandstone of the Moni Melange, S Cyprus. Sporadic Late Cretaceous subduction-related magmatism, represented by a Campanian volcaniclastic sequence (80.44±1.0 Ma) inWCyprus and a Late Campanian felsic volcanogenic sequence (72.9±1.0 Ma) in N Cyprus, represents early and more advanced stages of northward subduction during closure of the S Neotethys. Specifically, the Kannaviou Formation in W Cyprus (up to 750 m thick) is made up of deep-marine volcaniclastic sandstones that were mostly deposited by gravity flows and as air-fall tuff, interbedded with clay and radiolarian mudstones. Petrographic and geochemical analyses are indicative of a volcanic arc source, with deposition in a fore-arc basin. Petrographic evidence of terrigenous input (e.g. muscovite, muscovite schist, polycrystalline quartz) points to a subordinate continental source. Mineral chemistry is consistent with a volcanic arc origin. Elevated trace-element ratios in undevitrified volcanic glass (e.g. Th/Nb, Th/La) are indicative of involvement of continental crust or subducted terrigenous sediments in source-arc melting. Felsic volcanogenic rocks (Fourkovouno (Selvilitepe) Formation) in the Kyrenia Range, N Cyprus, occur as an up to 400 m-thick sequence of felsic tuffs, felsic debris-flowdeposits and rhyolitic lava flows. Geochemical analyses are indicative of evolved high-K and shoshonitic compositions, similar to those of the Andean active continental margin. Subduction continued to affect the northern continental margin of the S Neotethys in the Kyrenia Range during the Maastrichtian. This lead to the accumulation of Late Cretaceous sandstone turbidites and related basaltic volcanics, possibly in a back-arc setting. The volcanism took place in two phases (Late Cretaceous and Palaeogene-Early Eocene) during pelagic carbonate accumulation. These lavas have within-plate affinities, but with a variable subduction influence in some areas (e.g. western Kyrenia Range), which may be contemporaneous or inherited from previous subduction. The sedimentary sequences in the Kyrenia Range, N Cyprus, document diachronous closure of the S Neotethys. Late Cretaceous and Eocene sandstone turbidites, and the lower part of the overlying Oligocene-Miocene succession exhibit enrichment in ultramafic components that was probably sourced from ophiolite-related rocks in the Taurides to the north. In contrast, Miocene sandstone turbidites higher in the sequence show an increasing input of continent-derived siliciclastic material (and sorting effects). The terrigenous-influenced sediments are likely to represent erosion of thrust sheets that were emplaced from the S Neotethys onto the Arabian foreland in SE Turkey related to continental collision. Ediacaran-Cryogenian and Tonian-Stenian-aged zircons dominate the Late Cretaceous and Eocene sandstone turbidites, consistent with derivation from the Tauride micro-continent to the north and/or NE. Overlying Miocene sandstones include minor populations of Neoproterozoic-aged zircons, suggestive of reworking from source rocks of ultimately Gondwanan origin (e.g. NE Africa/Arabian-Nubian Shield). In summary, the thesis results exemplify the interaction of tectonic processes associated with the evolution of the S Neotethys Ocean. This began in the area studied with passive margin development (Triassic-Cretaceous), and was followed by multi-stage subduction-related volcanism and sedimentation (Late Cretaceous-Miocene). Final closure of the S Neotethys in this area took place during the Late Miocene-Recent.

Page generated in 0.0699 seconds