• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 350
  • 187
  • 98
  • 66
  • 47
  • 16
  • 16
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • Tagged with
  • 983
  • 293
  • 156
  • 152
  • 122
  • 100
  • 98
  • 90
  • 76
  • 75
  • 74
  • 69
  • 64
  • 55
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Fiber-Optic Interconnections in High-Performance Real-Time Computer Systems

Jonsson, Magnus January 1997 (has links)
<p>Future parallel computer systems for embedded real-time applications,where each node in itself can be a parallel computer, are predicted to havevery high bandwidth demands on the interconnection network. Otherimportant properties are time-deterministic latency and guarantees to meetdeadlines. In this thesis, a fiber-optic passive optical star network with amedium access protocol for packet switched communication in distributedreal-time systems is proposed. By using WDM (Wavelength DivisionMultiplexing), multiple channels, each with a capacity of several Gb/s, areobtained.</p><p>A number of protocols for WDM star networks have recently been proposed.However, the area of real-time protocols for these networks is quiteunexplored. The protocol proposed in this thesis is based on TDMA (TimeDivision Multiple Access) and uses a new distributed slot-allocationalgorithm with real-time properties. Services for both guarantee-seekingmessages and best-effort messages are supported for single destination,multicast, and broadcast transmission. Slot reserving can be used toincrease the time-deterministic bandwidth, while still having an efficientbandwidth utilization due to a simple slot release method.</p><p>By connecting several clusters of the proposed WDM star network by abackbone star, thus forming a star-of-stars network, we get a modular andscalable high-bandwidth network. The deterministic properties of thenetwork are theoretically analyzed for both intra-cluster and inter-clustercommunication, and computer simulations of intra-cluster communicationare reported. Also, an overview of high-performance fiber-opticcommunication systems is presented.</p>
162

Fibre-Optic AWG Networks Supporting Real-Time Communication in High-Performance Embedded Systems

Kunert, Kristina January 2008 (has links)
<p>High-performance embedded systems communicating heterogeneous traffic with high bandwidth and strict timing requirements are in need of more efficient communication solutions. This thesis proposes two multi-wavelength passive optical networks able to meet these demands. The networks are based upon a single-hop star topology with an Arrayed Waveguide Grating (AWG) placed in the centre. The intended application areas for the two networks are short range embedded communication systems like System Area Networks (SANs) and router architectures with electronic queuing. The AWG’s attractive property of spatial wavelength reuse, as well as the combination of fixed-tuned and tuneable transceivers in the end nodes, enables simultaneous control and data traffic transmission. This, in turn, makes it possible to support heterogeneous traffic with both hard and soft real-time constraints.</p><p>Additionally, two Medium Access Control (MAC) protocols, one for each network solution, are developed. Traffic scheduling is centrally controlled by a node, the protocol processor, residing together with the AWG in a hub. All nodes use Earliest Deadline First (EDF) scheduling and communicate with the protocol processor through physical control channels. A case study, including simulations, in the field of Radar Signal Processing (RSP) and simulations using periodic real-time traffic are conducted for the two application areas respectively, showing very good results. Further, a deterministic real-time analysis is conducted to provide throughput and delay guarantees for hard real-time traffic and an increase in guaranteed traffic is achieved through an analysis of existing traffic dependencies in a multichannel network. Simulation results incorporating the traffic dependency analysis indicate a considerable increase in the possible guaranteed throughput of hard real-time traffic.</p>
163

Diagnosis of Leber’s hereditary optic neuropathy (LHON) : analysis of MT-ND1, MT-ND4 and MT-ND6 in patients with LHON

Ågersten, Alexandra January 2009 (has links)
<p>Leber´s hereditary optic neuropathy (LHON), a disease affecting vision, is caused by several point mutations in mitochondrial DNA. Mutations leading to a defect NADH ubiquinone oxidoreductase protein will affect the respiratory chain and cause a disturbed ATP production. It is still unknown why this defect leads to the degeneration of retinal ganglion cells and cells in the opticus nerve as well as demyelination of axons in these areas. Analysis of mitochondrial DNA is an important tool in the diagnosis of the disease. At the present time analysis is based on cleavage by restriction enzymes, which only detects two of the most frequent mutations: m.3460G>A and m.11778G>A. This is far too few considering that more than 30 mutations are known to be associated with LHON. Therefore a new analysis method is requested. Here we describe a method based on the sequencing of the mitochondrial genes MT-ND1, MT-ND4 and MT-ND6, which will detect more than 15 different point mutations associated with the disease. To validate the analysis, DNA from 31 patients with LHON symptoms were sequenced; of these 10 were found to be positive for a LHON mutation. This result indicates that the sequencing analysis will be more effective in diagnosis of LHON than restriction enzymes.</p> / <p>Lebers hereditära optikus neuropati (LHON) är en sjukdom som beror på genetiska förändringar i arvsmassan som leder till att cellens energiomsättning rubbas. Detta gör att nervceller i ögat och synnerven bryts ned vilket leder till en synnedsättning. En patient som drabbas av LHON har inga symptom fram till dess att synen börjar försämras. Sjukdomsförloppet går snabbt och på bara några veckor är patienten ofta helt blind. Diagnostik av LHON idag utgörs av flera undersökningar av öga och synfält. Diagnosen bekräftas av en analys av arvsmassan som finns i mitokondrien, cellens energifabrik. Här beskriver vi en ny förbättrad analysmetod baserad på DNA sekvensering, dvs. bestämning av baserna i mitokondriella arvsmassan. För att utvärdera analysen har vi undersökt 31 patienter med misstänkt LHON - av dessa visade sig 10 bära på en sjuklig förändring. Resultatet visar att sekvensering med fördel kan ersätta den tidigare analysmetoden då fler sjukliga förändringar kan påvisas och utförandet av analysen är mer användarvänligt.</p>
164

Diagnosis of Leber’s hereditary optic neuropathy (LHON) : analysis of MT-ND1, MT-ND4 and MT-ND6 in patients with LHON

Ågersten, Alexandra January 2009 (has links)
Leber´s hereditary optic neuropathy (LHON), a disease affecting vision, is caused by several point mutations in mitochondrial DNA. Mutations leading to a defect NADH ubiquinone oxidoreductase protein will affect the respiratory chain and cause a disturbed ATP production. It is still unknown why this defect leads to the degeneration of retinal ganglion cells and cells in the opticus nerve as well as demyelination of axons in these areas. Analysis of mitochondrial DNA is an important tool in the diagnosis of the disease. At the present time analysis is based on cleavage by restriction enzymes, which only detects two of the most frequent mutations: m.3460G&gt;A and m.11778G&gt;A. This is far too few considering that more than 30 mutations are known to be associated with LHON. Therefore a new analysis method is requested. Here we describe a method based on the sequencing of the mitochondrial genes MT-ND1, MT-ND4 and MT-ND6, which will detect more than 15 different point mutations associated with the disease. To validate the analysis, DNA from 31 patients with LHON symptoms were sequenced; of these 10 were found to be positive for a LHON mutation. This result indicates that the sequencing analysis will be more effective in diagnosis of LHON than restriction enzymes. / Lebers hereditära optikus neuropati (LHON) är en sjukdom som beror på genetiska förändringar i arvsmassan som leder till att cellens energiomsättning rubbas. Detta gör att nervceller i ögat och synnerven bryts ned vilket leder till en synnedsättning. En patient som drabbas av LHON har inga symptom fram till dess att synen börjar försämras. Sjukdomsförloppet går snabbt och på bara några veckor är patienten ofta helt blind. Diagnostik av LHON idag utgörs av flera undersökningar av öga och synfält. Diagnosen bekräftas av en analys av arvsmassan som finns i mitokondrien, cellens energifabrik. Här beskriver vi en ny förbättrad analysmetod baserad på DNA sekvensering, dvs. bestämning av baserna i mitokondriella arvsmassan. För att utvärdera analysen har vi undersökt 31 patienter med misstänkt LHON - av dessa visade sig 10 bära på en sjuklig förändring. Resultatet visar att sekvensering med fördel kan ersätta den tidigare analysmetoden då fler sjukliga förändringar kan påvisas och utförandet av analysen är mer användarvänligt.
165

Sterilization of Operating Microscope and Flexible Fiber-Optic Illuminator by Formaldehyde Gas

NAMBA, YOSHIMICHI, SUZUKI, ASAKATSU 11 1900 (has links)
No description available.
166

Spatial deficits in visuomotor control following right parietal injury

Broderick, Carol Elizabeth January 2007 (has links)
Superior parietal cortex has been implicated in visuomotor guidance and is proposed to be specialised for action in the lower visual field and peripersonal space. Two patients, one with a right superior parietal lesion leading to optic ataxia (ME), and one with a lesion affecting right inferior parietal cortex (LH), were compared to elderly controls (n=8) and young controls (n=8) on a reciprocal pointing task with movements made in the near-far direction (i.e., sagittal plane) or right-left direction (i.e., fronto-parallel plane). In contrast to both control groups, who demonstrated a speed-accuracy trade-off in movement time and peak velocity, neither of the patients did. When the time spent post-peak velocity (represented as a percentage of total movement time) was examined, both patients demonstrated larger times post-peak velocity than controls for all movement directions. Furthermore, while rightward movements of the right hand had higher times post-peak velocity than leftward movements there were no directional patterns for near-far movements which contrasted with controls who had larger times post-peak velocity for near movements. The patient with the more superior lesion (ME) had the greatest difficulty with movements made back toward the body suggestive of a role for superior parietal cortex in the fine tuning of movements made in this region of space (i.e., personal or peripersonal space). In contrast, all directions of movement seemed to be equally affected in the patient with a more inferior lesion. These results are discussed in terms of the different roles played by inferior and superior parietal cortex in the control of visually guided movements.
167

Spatial deficits in visuomotor control following right parietal injury

Broderick, Carol Elizabeth January 2007 (has links)
Superior parietal cortex has been implicated in visuomotor guidance and is proposed to be specialised for action in the lower visual field and peripersonal space. Two patients, one with a right superior parietal lesion leading to optic ataxia (ME), and one with a lesion affecting right inferior parietal cortex (LH), were compared to elderly controls (n=8) and young controls (n=8) on a reciprocal pointing task with movements made in the near-far direction (i.e., sagittal plane) or right-left direction (i.e., fronto-parallel plane). In contrast to both control groups, who demonstrated a speed-accuracy trade-off in movement time and peak velocity, neither of the patients did. When the time spent post-peak velocity (represented as a percentage of total movement time) was examined, both patients demonstrated larger times post-peak velocity than controls for all movement directions. Furthermore, while rightward movements of the right hand had higher times post-peak velocity than leftward movements there were no directional patterns for near-far movements which contrasted with controls who had larger times post-peak velocity for near movements. The patient with the more superior lesion (ME) had the greatest difficulty with movements made back toward the body suggestive of a role for superior parietal cortex in the fine tuning of movements made in this region of space (i.e., personal or peripersonal space). In contrast, all directions of movement seemed to be equally affected in the patient with a more inferior lesion. These results are discussed in terms of the different roles played by inferior and superior parietal cortex in the control of visually guided movements.
168

ATTENTION AND THE PARIETAL CORTEX: INVESTIGATIONS OF SPATIAL NEGLECT, OPTIC ATAXIA, AND THE INFLUENCE OF PRISM ADAPTATION ON ATTENTION

Striemer, Christopher 21 April 2008 (has links)
Some authors have argued that the primary function of the posterior parietal cortex is to control visual attention and awareness, whereas others have argued that the posterior parietal cortex is specialized for controlling actions. The purpose of the present thesis was to examine the influence of prism adaptation – a visuomotor adaptation technique – on visual attention deficits in patients with lesions of parietal cortex. Lesions to dorsal regions of the posterior parietal cortex lead to optic ataxia – a disorder in which visually guided reaching is disrupted. In contrast lesions to ventral (i.e. inferior) regions of the posterior parietal cortex of the right hemisphere lead to spatial neglect – a disorder in which patients are unaware of people or objects in contralesional (left) space. Chapter 1 presents an overview of the organization of the posterior parietal cortex, as well as an introduction to the disorders of spatial neglect and optic ataxia and the use of prism adaptation as a treatment for spatial neglect. Chapter 2 examined the influence of prism adaptation on attentional deficits in patients with right brain damage. Results demonstrated that prism adaptation reduced both the disengage deficit and the rightward attentional bias, two of the classic attentional deficits in neglect. Chapter 3 investigated the role of the dorsal posterior parietal cortex in controlling both reflexive and voluntary attention in two patients with optic ataxia. Lesions to the dorsal posterior parietal cortex led to both a disengage deficit and a rightward attentional bias, similar to patients with neglect, even though neither of the patients had any clinical symptoms of neglect. Contrary to previous work these results indicated that dorsal portions of the posterior parietal cortex – a region not commonly damaged in neglect – are important for controlling the orienting and reorienting of both reflexive and voluntary attention. Furthermore, these results indicated that optic ataxia is not purely a visuomotor disorder that is independent of any perceptual or attentional deficits as was previously assumed. Based on the results of Chapters 2 and 3 it was hypothesized that the beneficial effects of prism adaptation on attention may operate via the superior parietal lobe, a region which is typically undamaged in neglect, and is known to be important for controlling attention and action. Chapter 4 provided support for this hypothesis by demonstrating that a patient with lesions to the superior parietal lobe, who had the same attentional deficits as the right brain damaged patients tested in Chapter 2, failed to demonstrate any beneficial effects of prism adaptation on his attentional performance. Specifically, prism adaptation had no influence on his disengage deficit or his rightward attentional bias. Therefore, these data provide direct evidence that the beneficial effects of prisms on attention rely, at least in part, on the superior parietal lobe. Finally, Chapter 5 concludes with a summary of the research findings from the present thesis, and puts forward a new theory to conceptualize the mechanisms underlying the beneficial effects of prisms in patients with neglect.
169

Retinal and Optic Nerve Head Vascular Reactivity in Primary Open Angle Glaucoma

Trichy Venkataraman, Subha January 2009 (has links)
The global aim of this thesis was to assess retinal vascular reactivity in glaucoma patients using a standardised hypercapnic stimulus. There is a suggestion of disturbance in the regulation of retinal and optic nerve head (ONH) hemodynamics in patients with Primary Open Angle Glaucoma (POAG), although much of the work to-date has either been equivocal or speculative. Previous studies have used non-standardised hypercapnic stimuli to assess vascular reactivity. To explain, hypercapnia induces hyperventilation which disturbs arterial oxygen concentration, an effect that varies between individuals resulting in the non-standardised provocation of vascular reactivity. Therefore, a normoxic hypercapnic provocation was developed to avoid additional and potentially uncontrolled vasoconstriction in what is thought to be a vasospastic disease. The development of a safe, sustained and stable normoxic hypercapnic stimulus was essential for the assessment of retinal arteriolar vascular reactivity so that repeated hemodynamic measurements could be obtained. Furthermore, most techniques used to measure vascular reactivity do not comprehensively assess retinal hemodynamics, in terms of the simultaneous measurement of vessel diameter and blood velocity in order to calculate flow. In this respect, this study utilized a technique that quantitatively assesses retinal blood flow and vascular reactivity of the major arterioles in close proximity to the ONH. The stimulus and vascular reactivity quantification technique was validated in healthy controls and then was clinically applied in patients with POAG. Newly diagnosed patients with untreated POAG (uPOAG) were recruited in order to avoid any confounding pharmacological effects and patients with progressive POAG (pPOAG) were also selected since they are thought to likely manifest vascular dysregulation. Finally, the results of the functional vascular reactivity assessment were compared to those of systemic biochemical markers of endothelial function in patients with untreated and progressive POAG and in healthy controls. Overall summary A safe, sustained, stable and repeatable normoxic hypercapnic stimulus was developed, evaluated and validated. In terms of the physiology of retinal vascular regulation, the percent magnitude of vascular reactivity of the arterioles and capillaries was found to be comparable in terms of flow. The new stimulus was successfully applied in POAG and in healthy controls to assess vascular reactivity and was also compared to plasma levels of ET-1 and cGMP. In terms of the patho-physiology of POAG, the study revealed a clear impairment of vascular reactivity in the uPOAG and pPOAG groups. There were reduced levels of plasma ET-1 in the uPOAG and ntPOAG groups. In addition, treatment with Dorzolamide improved vascular reactivity in the ntPOAG group in the absence of any change in the expression of plasma ET-1 or cGMP. Future work will address this apparent contradiction between the outcome of the functional vascular reactivity assessment and the biochemical markers of endothelial function in newly diagnosed POAG patients treated with Dorzolamide. Aims of chapters  Chapter 3: To determine the effect of hypercapnia on retinal capillary blood flow in the macula and ONH using scanning laser Doppler flowmetry (SLDF) in young healthy subjects.  Chapter 4: To describe a new manual methodology that permits the comprehensive assessment of retinal arteriolar vascular reactivity in response to a sustained and stable hypercapnic stimulus. The secondary aim was to determine the magnitude of the vascular reactivity response of the retinal arterioles to hypercapnic provocation in young healthy subjects.  Chapter 5: To compare the magnitude of vascular reactivity of the retinal arterioles in terms of percentage change of flow to that of the retinal capillaries using a novel automated standardized methodology to provoke normoxic, or isoxic, hypercapnia.  Chapter 6: To determine the magnitude of retinal arteriolar vascular reactivity to normoxic hypercapnia in patients with untreated POAG (uPOAG), progressive POAG (pPOAG) and controls. The secondary aim was to determine retinal vascular reactivity in newly treated POAG (ntPOAG, i.e. after treatment with 2% Dorzolamide, twice daily for 2 weeks).  Chapter 7: To compare plasma endothelin-1 (ET-1) and cyclic guanosine monophosphate (cGMP) between groups of patients with untreated primary open angle glaucoma (uPOAG), progressive POAG (pPOAG), newly treated POAG (ntPOAG) and controls. The effect of normoxic hypercapnia on plasma ET-1 and cGMP was also assessed. The functional measures of retinal blood flow and vascular reactivity were correlated with systemic biochemical markers of endothelial function. Methods Chapters 3, 4 and 5 were conducted on young healthy control subjects, where as Chapters 6 and 7 were conducted on patients with glaucoma and healthy controls.  Chapter 3: Subjects breathed unrestricted air for 15 minutes (baseline) via a sequential gas delivery circuit and then the fractional (percent) end-tidal concentration of CO2 (FETCO2) was manually raised for 15 minutes by adding a low flow of CO2 to the inspired air. For the last 15 minutes, FETCO2 was returned to baseline values to establish a recovery period. Heidelberg Retina Flowmeter (HRF) images centered on both the ONH and the macula were acquired during each phase.  Chapter 4: Subjects breathed air via a sequential gas delivery circuit for 15 minutes and the air flow was then manually decreased so that subjects inspired gases from the rebreathing reservoir until a stable 10-15% increase in FETCO2 concentration was achieved for 20 minutes. Air flow rate was then manually elevated so that subjects breathed primarily from the fresh gas reservoir to return FETCO2 back to baseline for the last 15 minutes. Retinal arteriolar hemodynamics was assessed using the Canon Laser Blood Flowmeter (CLBF) during all three breathing phases.  Chapter 5: Normoxic, or isoxic, hypercapnia was induced using an automated gas flow controller (RespirActTM, Thornhill Research Inc. Toronto, Canada). Subjects breathed air with PETCO2 normalized at 38 mmHg. An increase in PETCO2 of 15% above baseline, whilst maintaining normoxia, was then implemented for 20 minutes and then PETCO2 was returned to baseline conditions for 10 minutes. Retinal and ONH hemodynamic measurements were performed using the CLBF and HRF in random order across sessions.  Chapter 6: Retinal arteriolar vascular reactivity was assessed in patients with uPOAG, pPOAG (defined by the occurrence of optic disc hemorrhage within the past 24 months) and controls during normoxic hypercapnia. Using the automated gas flow controller, patients breathed air for 10 mins and PETCO2 was maintained at 38mmHg. Following this normoxic hypercapnia (a 15% increase in PETCO2 while PETO2 was maintained at resting levels) was induced for 15 mins and then for the last 10 mins PETCO2 was returned to baseline (post-hypercapnia) to establish recovery blood flow values. Retinal arteriolar diameter, blood velocity and blood flow was assessed using the CLBF in both patient groups and controls. A similar paradigm was repeated in the newly treated POAG group (ntPOAG, i.e. after treatment with 2% Dorzolamide, twice daily for 2 weeks).  Chapter 7: Blood samples were collected from the cubital vein of all participants (uPOAG, pPOAG, ntPOAG and controls) during baseline conditions (PETCO2=38mmHg) and then during normoxic hypercapnia (i.e. a 15% increase in PETCO2 relative to the baseline) using the paradigm described for Chapter 6. ET-1 and cGMP was assessed using immunoassay. Results  Chapter 3: The group mean nasal macula capillary blood flow increased from 127.17 a.u. (SD 32.59) at baseline to 151.22 a.u. (SD 36.67) during hypercapnia (p=0.028), while foveal blood flow increased from 92.71 a.u. (SD 28.07) to 107.39 a.u. (SD 34.43) (p=0.042). There was a concomitant and uncontrolled +13% increase in the group mean PETO2 during the hypercapnic provocation of +14% increase in PETCO2.  Chapter 4: Retinal arteriolar diameter, blood velocity and blood flow increased by 3.2% (p=0.0045), 26.4% (p<0.0001) and 34.9% (p<0.0001), respectively during hypercapnia. There was a stable ¬+12% increase in PETCO2 during hypercapnia and a concomitant -6% decrease in PETO2.  Chapter 5: Using an automated gas flow controller the co-efficient of repeatability (COR) was 5% of the average PETCO2 at baseline and during normoxic hypercapnia. The COR for PETO2 was 10% and 7% of the average PETO2 at baseline and during normoxic hypercapnia, respectively. Group mean PETCO2 increased by approximately +14.4% and there was only a +4.3% increase in PETO2 during hypercapnia across both study sessions. Retinal arteriolar hemodynamics increased during hypercapnia (p<0.001). Similarly, there was an increase in the capillary blood flow of the temporal rim of the ONH (p<0.001), nasal macula (p<0.001) and foveal areas (p<0.006) during hypercapnia. A non-significant trend for capillary blood flow to increase in the macula temporal area (+8.2%) was noted. In terms of percentage change of blood flow, retinal capillary vascular reactivity (i.e. all 4 analyzed areas = 22.4%) was similar to the magnitude of arteriolar (= 24.9%) vascular reactivity.  Chapter 6: Retinal arteriolar diameter, blood velocity and flow did not increase during normoxic hypercapnia in uPOAG compared to controls. Diameter and blood velocity did not change in pPOAG during normoxic hypercapnia but there was a significant increase in blood flow (+9.1%, p=0.030). After treatment with 2% Dorzolamide for 2 weeks there was a 3% (p=0.040), 19% (p<0.001) and 26% (p<0.001) increase in diameter, velocity and flow, respectively, in the ntPOAG group. Group mean PETCO2 increased by approximately +15% in all the groups and there was only a +3% increase in PETO2 during hypercapnia.  Chapter 7: Plasma ET-1 levels were significantly different across groups at baseline (one way ANOVA; p=0.0012) and this was repeated during normoxic hypercapnia (one way ANOVA; p=0.0014). ET-1 levels were lower in uPOAG compared to pPOAG and controls at baseline and during normoxic hypercapnia (Tukey’s honestly significant difference test). Similarly, ntPOAG group also showed lower ET-1 levels compared to the pPOAG and controls at baseline and during normoxic hypercapnia (Tukey’s honestly significant difference test). The cGMP at baseline and during normoxic hypercapnia across all groups was not different. In the control group, the change in ET-1 during normoxic hypercapnia was negatively correlated with change in retinal arteriolar blood flow (r = -0.52, p=0.04), that is, as the change in ET-1 reduced, the change in blood flow increased. A weak correlation was noted between change in cGMP during normoxic hypercapnia and the change in arteriolar blood flow (r = +0.45, p=0.08). Conclusions  Chapter 3: Hypercapnia resulted in a quantifiable capillary vascular reactivity response in 2 of the 3 assessed retinal locations (i.e., nasal macula and fovea). There was no vascular reactivity response of the ONH. It is critical to minimise the concomitant change in PETO2 during hypercapnia in order to obtain robust vascular reactivity responses.  Chapter 4: A technique to comprehensively assess vascular reactivity during stable and sustained hypercapnia was described. Retinal arteriolar diameter, blood velocity and blood flow increased in response to hypercapnia. The vascular reactivity results of this study served as a reference for future studies using the hypercapnic provocation and CLBF. Also, the concomitant change in PETO2 using the partial rebreathing technique was reduced compared to the manual addition of CO2 technique described in Chapter 3 but was still greater than optimal.  Chapter 5: A new automated gas flow controller was used to induce standardised normoxic, or isoxic, hypercapnia. The magnitude of vascular reactivity in both retinal arterioles and capillaries in response to the new hypercapnic stimulus was robust compared to the previous stimuli. There was a clear ONH vascular reactivity response in this study, unlike the result attained in Chapter 3. Although theoretically it is predictable that the percent magnitude of vascular reactivity of the arterioles and capillaries should be similar, this is the first study to show that they are indeed comparable. The magnitude of hypercapnia was repeatable and the concomitant change in PETO2 was minimal and physiologically insignificant.  Chapter 6: The normal response of the retinal arterioles and capillaries to normoxic hypercapnia is impaired in both uPOAG and pPOAG compared to controls. Short term treatment with 2% topical Dorzolamide for two weeks improved retinal vascular reactivity in ntPOAG. However, it is still unclear whether this improvement is a direct effect of Dorzolamide or as a secondary effect of the decrease in intraocular pressure (IOP).  Chapter 7: We found a reduction in the plasma ET-1 at baseline and during normoxic hypercapnia in the uPOAG and in the ntPOAG groups. This is the first study to show a lower plasma ET-1 level in uPOAG. The fact that this finding was repeated after 2 weeks treatment with Dorzolamide in the ntPOAG group further validates these results. It also suggests that Dorzolamide treatment does not impact ET-1 and cGMP measures, although it clearly results in an improvement of vascular reactivity. Correlation results suggest that as the change in ET-1 reduced during normoxic hypercapnia, the change in blood flow increased in the controls.
170

Application of Multi-wavelength Fluorometry to Monitoring Protein Ultrafiltration

Elshereef, Rand 18 April 2009 (has links)
Membrane filtration of protein solutions is influenced by a wide range of processing and physicochemical conditions. Monitoring and optimizing membrane filtration may have advantages for achieving, in a cost effective manner, improved bioproduct purification and membrane performance which is relevant to pharmaceutical and biochemical applications. The motivation of this work was to examine the feasibility of applying two-dimensional fluorescence spectroscopy in conjunction with chemometric techniques for monitoring and possibly optimizing the performance of membrane processes. Preliminary work focused on assessing the use of multivariate calibration tools in conjunction with the sensitivity of intrinsic protein fluorescence towards changes in environmental conditions was to predict protein concentration and aggregation behavior. A model protein, β-lactoglobulin (β-LG), was used as a first simple case scenario. Results showed very good agreement between the fluorescence based predictions and measurements obtained by HPLC and gravimetric analysis regardless of the conditions. PLS analysis of excitation-emission matrices revealed unique spectral fingerprints that are most likely associated with the heat-induced denaturation and aggregation. Standard Normal Variate, a signal preprocessing and filtering tool, was shown to have a significant effect on enhancing the predictive accuracy and robustness of the PLS model as it reduced the effect of instrumental noise. The methodology was then extended to a two-component protein system consisting of α- lactlalbumin (α-LA) and β-lactoglobulin (β-LG). The process of thermal induced aggregation of β-LG and α-LA protein in mixtures, which involves the disappearance of native-like proteins, was studied under various treatment conditions including different temperatures, pH, total initial protein concentration and proportions of α-LA and β-LG. A Partial Least Squares (PLS) regression algorithm was used to correlate the concentrations of α-LA and β-LG to the fluorescence spectra obtained for mixtures.The results illustrated that multivariate models could effectively deconvolute multiwavelength fluorescence spectra collected for the protein mixtures and thereby provide a fairly accurate quantification of respective native-like α-LA and β-LG despite the significant overlap between their emission profiles. It was also demonstrated that a PLS model could be used as a black-box prediction tool for estimating protein aggregation when combined with simple mass balances. Ultrafiltration experiments of the whey protein isolate solutions were carried out in dead-end filtration mode and fluorescence measurements of permeate and retentate solutions were acquired in synchronous scanning mode using a fiber optic probe. By implementing a dilution strategy for the retentate side, the fluorescence based PLS model encompassed a low protein concentration range where fluorescence was not expected to be significantly influenced by concentration-dependent interferences. It was also demonstrated that synchronous spectra can provide good predictions and consequently the use of the full spectrum may not be necessary for monitoring with corresponding savings in acquisition time. Membrane performance variables that are difficult to measure, such as individual protein transmission and membrane selectivity could be estimated directly from fluorescence-based predictions of protein concentrations in the retentate and permeate streams. Multiwavelength light scattering spectra, acquired using the fiber optic probe, were shown to be a useful indicator for protein self-association behavior, which is known to influence the membrane filtration. High fouling potential were observed for protein solutions that exhibited significant Rayleigh scattering. A predictive PLS model for estimating protein aggregation from Rayleigh scattering measurements was developed and it was tested by using molecular weight experimental values obtained from the literature. Although this comparison was only partial due to the limited amount of molecular weight data available, the findings verified the possibility of estimating the aggregate size from multiwavelength Rayleigh scattering spectra acquired using a conventional spectrofluorometer. Thus, the results implied that both intrinsic fluorescence and light scattering multiwavelength measurements could provide complementary information about the filtration process.

Page generated in 0.0281 seconds