• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 350
  • 187
  • 98
  • 66
  • 47
  • 16
  • 16
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • Tagged with
  • 983
  • 293
  • 156
  • 152
  • 122
  • 100
  • 98
  • 90
  • 76
  • 75
  • 74
  • 69
  • 64
  • 55
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Comparison between tissue-based indirect immunofluorescence andenzyme-linked immunosorbent assays, two detection methods for anti-aquaporin-4 antibodies in neuromyelitis optica spectrum disorders

Lo, Yuk-fai., 盧育輝. January 2011 (has links)
published_or_final_version / Medicine / Master / Master of Medical Sciences
182

Novel EO polymer-based micro- and nano photonic devices for analog and digital communications

Lee, Beom Suk, 1974- 21 June 2011 (has links)
Polymer-based electro-optical modulators are, generally, applicable to many fields but their applications to analog optical links and silicon photonic integrated circuits are specifically emphasized in this dissertation. This dissertation aims to improve the linearity characteristics of polymer-based electro-optic modulators for their practical application in high speed analog optical links. Domain-inversion technique is employed to linearize a two-section Y-fed directional coupler modulator. The spurious free dynamic range as high as 119dB/Hz2/3 has been demonstrated with 11dB enhancement over the conventional Mach-Zehnder modulator at low frequency. For high speed modulation, a traveling wave electrode with low RF loss and large bandwidth is designed and installed in a linearized Y-fed directional coupler modulator. The spurious free dynamic range has been measured in the range of 110±3dB/Hz2/3 at 2~8GHz frequency. For digital application of polymer-based electro-optic modulators, a hybrid silicon photonic crystal waveguide modulator was investigated with focus on size-reduction and electro-optic efficiency enhancement. The slow group velocity of photonic crystal waveguides promises two orders of magnitude size-reduction in device footprint compared with the conventional strip waveguide. Infiltration of an electro-optic polymer into the slot waveguide can infuse silicon with nonlinear optical properties. To actualize these benefits of a hybrid silicon photonic crystal waveguide modulator, nano-fabrication process was developed and optimized in this work. / text
183

Nonlinear magneto-optic effects in optically dense Rb vapor

Novikova, Irina Borisovna 30 September 2004 (has links)
Nonlinear magneto-optical effects, originated from atomic coherence, are studied both theoretically and experimentally in thermal Rb vapor. The analytical description of the fundamental properties of coherent media are based on the simplified three- and four-level systems, and then verified using numerical simulations and experimental measurements. In particular, we analyze the modification of the long-lived atomic coherence due to various physical effects, such as reabsorption of spontaneous radiation, collisions with a buffer gas atoms, etc. We also discuss the importance of the high-order nonlinearities in the description of the polarization rotation for the elliptically polarized light. The effect of self-rotation of the elliptical polarization is also analyzed. Practical applications of nonlinear magneto-optical effects are considered in precision metrology and magnetometery, and for the generation of non-classical states of electromagnetic field.
184

Temporal changes in the ability of degenerating pathways to be penetrated by regenerating axons in the goldfish

Paré, Michel, 1958- January 1983 (has links)
No description available.
185

Point-based Ionizing Radiation Dosimetry Using Radiochromic Materials and a Fibreoptic Readout System

Rink, Alexandra 01 August 2008 (has links)
Real-time feedback of absorbed dose at a point within a patient can help with radiological quality assurance and innovation. Two radiochromic materials from GafChromic MD-55 and EBT films have been investigated for applicability in real-time in vivo dosimetry of ionizing radiation. Both films were able to produce a real-time measurement of optical density from a small volume, allowing positioning onto a tip of an optical fibre in the future. The increase in optical density was linear with absorbed dose for MD-55, and non-linear for EBT. The non-linearity of EBT is associated with its increased sensitivity to ionizing radiation compared to MD-55, thus reaching optical saturation at a much lower dose. The radiochromic material in EBT film was also shown to polymerize and stabilize faster, decreasing dose rate dependence in real-time measurements in comparison to MD-55. The response of the two media was tested over 75 kVp – 18 MV range of x-ray beams. The optical density measured for EBT was constant within 3% throughout the entire range, while MD-55 exhibited a nearly 40% decrease at low energies. Both materials were also shown to be temperature sensitive, with the change in optical density generally decreasing when the temperature increased from ~22°C to ~37°C. This was accompanied by a shift in the peak absorbance wavelength. It was illustrated that some of this decrease can be corrected for by tracking the peak position and then multiplying the optical density by a correction factor based on the predicted temperature. Overall, the radiochromic material in GafChromic EBT film was found to be a better candidate for in vivo real-time dosimetry than the material in GafChromic MD-55. A novel mathematical model was proposed linking absorbance to physical parameters and processes of the radiochromic materials. The absorbance at every wavelength in the spectrum was represented as a sum of absorbances from multiple absorbers, where absorbance is characterized by its absorption coefficient, initiation constant, and polymerization constant. Preliminary fits of this model to experimental data assuming two absorbers suggested that there is a trade-off between EBT’s greater sensitivity and its dose linearity characteristics. This was confirmed by experimental results.
186

Point-based Ionizing Radiation Dosimetry Using Radiochromic Materials and a Fibreoptic Readout System

Rink, Alexandra 01 August 2008 (has links)
Real-time feedback of absorbed dose at a point within a patient can help with radiological quality assurance and innovation. Two radiochromic materials from GafChromic MD-55 and EBT films have been investigated for applicability in real-time in vivo dosimetry of ionizing radiation. Both films were able to produce a real-time measurement of optical density from a small volume, allowing positioning onto a tip of an optical fibre in the future. The increase in optical density was linear with absorbed dose for MD-55, and non-linear for EBT. The non-linearity of EBT is associated with its increased sensitivity to ionizing radiation compared to MD-55, thus reaching optical saturation at a much lower dose. The radiochromic material in EBT film was also shown to polymerize and stabilize faster, decreasing dose rate dependence in real-time measurements in comparison to MD-55. The response of the two media was tested over 75 kVp – 18 MV range of x-ray beams. The optical density measured for EBT was constant within 3% throughout the entire range, while MD-55 exhibited a nearly 40% decrease at low energies. Both materials were also shown to be temperature sensitive, with the change in optical density generally decreasing when the temperature increased from ~22°C to ~37°C. This was accompanied by a shift in the peak absorbance wavelength. It was illustrated that some of this decrease can be corrected for by tracking the peak position and then multiplying the optical density by a correction factor based on the predicted temperature. Overall, the radiochromic material in GafChromic EBT film was found to be a better candidate for in vivo real-time dosimetry than the material in GafChromic MD-55. A novel mathematical model was proposed linking absorbance to physical parameters and processes of the radiochromic materials. The absorbance at every wavelength in the spectrum was represented as a sum of absorbances from multiple absorbers, where absorbance is characterized by its absorption coefficient, initiation constant, and polymerization constant. Preliminary fits of this model to experimental data assuming two absorbers suggested that there is a trade-off between EBT’s greater sensitivity and its dose linearity characteristics. This was confirmed by experimental results.
187

Examination of the Neuroprotective Effects of URB597 in Young and Aged Rat Retina

Slusar, Joanna 23 September 2010 (has links)
Anandamide (AEA), a well characterized endocannabinoid that has actions at multiple targets in the eye, may have potential as a novel therapeutic in the treatment of retinal disease. However, AEA is rapidly degraded by fatty acid amide hydrolase (FAAH). Therefore this study examined the drug URB597, that inhibits FAAH degradation of AEA, to assess AEA effects in experimental models of retinal damage. The objectives were to: 1) evaluate changes present in the aging retina, 2) determine whether the aging retina is more susceptible to tissue damage, and 3) investigate whether increasing AEA can provide retinal neurovascular protection in young and aged retina following damage. The results from this study showed that URB597 had protective effects on retinal ganglion cells and retinal capillaries and inhibited phagocytotic MG in models of retinal damage in young, but not the aged retina.
188

Nanophotonic Silicon Electro-Optic Switch

Simili, Deepak 27 August 2012 (has links)
The design procedure for ultrafast silicon electro-optic switches using photonic crystals in order optimize the operation of the electro-optic switch is presented. The material medium selected for propagation of the optical signal through the switch is silicon nanocrystals in silica. A patterned slot waveguide with one-dimensional photonic crystals is proposed as the preferred slow light waveguide to be used in the design of the electro-optic switch. The ultrafast quadratic electro-optic Kerr effect is the physical effect utilized, and its analysis for slot waveguides is discussed. The optical structure analysis of the electro-optic switch using a ring resonator is presented and it is shown that the use of a slow light waveguide in the ring resonator can reduce the required externally applied electric field and the radius of the ring resonator.
189

Remnant inventory systems

Adelman, Daniel 12 1900 (has links)
No description available.
190

Responses of Astrocytes Exposed to Elevated Hydrostatic Pressure and Hypoxia

Rajabi, Shadi 22 September 2009 (has links)
Several research groups have applied elevated hydrostatic pressure to ONH astrocytes cultured on a rigid substrate as an in vitro model for glaucoma. These studies have shown significant biological effects and this hydrostatic pressure model is now becoming generally accepted in the ophthalmic community. However, since the applied pressures were modest the finding of significant biological effects due to pressure alone is surprising. We hypothesized that the application of hydrostatic pressure as described in these studies also altered gas tensions in the culture media. Our goal was to design equipment and carry out experiments to separate the biologic effects of pressure from those of hypoxia on cultured astrocytes. We designed equipment and carried out experiments to subject cultures of DITNC1 astrocytes to the four combinations of two levels of each parameter. We explored the morphology and migration rates of astrocytes, but observed no significant change in any of these properties.

Page generated in 0.0214 seconds