• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ADAPTIVE EQUALIZATION FOR OQPSK THROUGH A FREQUENCY SELECTIVE FADING CHANNEL

Fan, Tiange, Yao, Kung, Whiteman, Don 10 1900 (has links)
International Telemetering Conference Proceedings / October 23-26, 2000 / Town & Country Hotel and Conference Center, San Diego, California / Spectral sidelobes of QPSK, OQPSK, IJF-OQPSK, and SQAM modulated signals after nonlinear amplification are compared. It is known that OQPSK has lower spectral sidelobes than QPSK. However, in the presence of frequency selective fading, a decision-feedback adaptive equalizer is able to equalize the QPSK signal but not the OQPSK signal. By using phase pre-distortion on the OQPSK waveform before nonlinear amplification, not only is the adaptive equalizer able to equalize this signal, its spectral sidelobes are also reduced. Simulations are presented to confirm these results.
2

A Comparison of Coherent Detectors for SOQPSK-TG

Xingwen, Ding, Wantao, Zhai, Jianyong, Song, Ming, Chen 10 1900 (has links)
ITC/USA 2015 Conference Proceedings / The Fifty-First Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2015 / Bally's Hotel & Convention Center, Las Vegas, NV / SOQPSK-TG is a highly bandwidth-efficient constant-envelope modulation so that it has been applied in airspace telemetry widely. We compare four types of coherent detectors for SOQPSK-TG, which are optimal detector, pulse truncation (PT) detector, standard OQPSK detector and modified OQPSK detector. The simulation and analysis results indicate that PT detector has the advantages of low complexity and good performance, so it has more practicality value.
3

AN ADAPTIVE BASEBAND EQUALIZER FOR HIGH DATA RATE BANDLIMITED CHANNELS

Wickert, Mark, Samad, Shaheen, Butler, Bryan 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Many satellite payloads require wide-band channels for transmission of large amounts of data to users on the ground. These channels typically have substantial distortions, including bandlimiting distortions and high power amplifier (HPA) nonlinearities that cause substantial degradation of bit error rate performance compared to additive white Gaussian noise (AWGN) scenarios. An adaptive equalization algorithm has been selected as the solution to improving bit error rate performance in the presence of these channel distortions. This paper describes the design and implementation of an adaptive baseband equalizer (ABBE) utilizing the latest FPGA technology. Implementation of the design was arrived at by first constructing a high fidelity channel simulation model, which incorporates worst-case signal impairments over the entire data link. All of the modem digital signal processing functions, including multirate carrier and symbol synchronization, are modeled, in addition to the adaptive complex baseband equalizer. Different feedback and feed-forward tap combinations are considered as part of the design optimization.
4

FQPSK-O: An Improved Performance Constant Envelope Modulation Scheme for OQPSK

Lee, Tong-Fu, Wang, Shih-Ho, Liu, Chia-Liang 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / A new constant envelope modulation scheme for OQPSK, called FQPSK-O, is presented. This modulation technique is an extension of the Feher Quadrature Shift Keying (FQPSK) patented technologies, see Ref[l]. This scheme uses cubic spline interpolation to generate very smooth baseband waveforms in order to increase the spectral and power efficiency. Being a constant envelope modulation, FQPSK-O can operate with class C power amplifier without spectrum regrowth. We achieve a more compact spectrum with comparable bit error rate performance. For example, the spectrum of FQPSK-O is 25% narrower than that of GMSK with BT(b)=0.3 and FQPSK-1 with hardlimiter [2] at -40 dB attenuation point. For coherent demodulation under AWGN channel, FQPSK-O has almost the same BER performance as FQPSK-1 with hardlimiter. Both of them are better than GMSK with BT(b)=0.3 for BER < 10^-4. In Rayleigh fading channel, FQPSK-O outperforms GMSK with BT(b)=0.3 by 2 dB. FQPSK-O is an excellent scheme for wireless and satellite communications which require high spectral and power efficiency.
5

Space-Time Coding with Offset Modulations

Nelson, N. Thomas 26 November 2007 (has links) (PDF)
In this dissertation it is shown that the telemetry versions of Feher-patented QPSK (FQPSK-JR) and shaped offset QPSK (SOQPSK-TG) can be interpreted as both cross-correlated, trellis-coded quadrature modulation (XTCQM) and continuous phase modulation (CPM). Based on these representations, both modulations can be detected with near optimal bit error rate performance using a common detector that is formulated as either an XTCQM detector, a traditional CPM detector, or a pulse amplitude modulation (PAM) detector (due to the PAM decomposition of the CPM representations of these modulations). In addition it is shown that the complexity of the XTCQM detector for SOQPSK-TG can be reduced by a factor of 128 with only a 0.2 dB loss in detection efficiency relative to the optimum detector. Three decoders for STC encoded OQPSK are presented. One decoder has a bit error rate performance that matches the SISO case but with much higher complexity than that of the QPSK decoder. A second decoder matches the simplicity of the decoder for STC encoded non-offset QPSK but with a loss of 3 dB relative to the single-input, single-output (SISO) case. A third decoder matches SISO performance with lower complexity than the first one. These results for STC encoded OQPSK are extended to STC SOQPSK. It is shown that the maximum likelihood decoder is not computationally feasible. Two suboptimal decoders based on the STC OQPSK decoders are presented. These decoders have much higher complexity than their OQPSK counterparts, and they provide inferior bit error rate performance. In addition, a least squares decoder for STC encoded SOQPSK is presented which is less complex and has better performance (within 1 dB of the SISO bound) than the previous two decoders. This decoder also handles the differential delays that can occur on aeronautical telemetry channels.

Page generated in 0.0216 seconds