• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

AN ADAPTIVE BASEBAND EQUALIZER FOR HIGH DATA RATE BANDLIMITED CHANNELS

Wickert, Mark, Samad, Shaheen, Butler, Bryan 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / Many satellite payloads require wide-band channels for transmission of large amounts of data to users on the ground. These channels typically have substantial distortions, including bandlimiting distortions and high power amplifier (HPA) nonlinearities that cause substantial degradation of bit error rate performance compared to additive white Gaussian noise (AWGN) scenarios. An adaptive equalization algorithm has been selected as the solution to improving bit error rate performance in the presence of these channel distortions. This paper describes the design and implementation of an adaptive baseband equalizer (ABBE) utilizing the latest FPGA technology. Implementation of the design was arrived at by first constructing a high fidelity channel simulation model, which incorporates worst-case signal impairments over the entire data link. All of the modem digital signal processing functions, including multirate carrier and symbol synchronization, are modeled, in addition to the adaptive complex baseband equalizer. Different feedback and feed-forward tap combinations are considered as part of the design optimization.
2

System Design of a Wide Bandwidth Continuous-Time Sigma-Delta Modulator

Periasamy, Vijayaramalingam 2010 May 1900 (has links)
Sigma-delta analog-to-digital converters are gaining in popularity in recent times because of their ability to trade-off resolutions in the time and voltage domains. In particular, continuous-time modulators are finding more acceptance at higher bandwidths due to the additional advantages they provide, such as better power efficiency and inherent anti-aliasing filtering, compared to their discrete-time counterparts. This thesis work presents the system level design of a continuous-time low-pass sigma-delta modulator targeting 11 bits of resolution over 100MHz signal bandwidth. The design considerations and tradeoffs involved at the system level are presented. The individual building blocks in the modulators are modeled with non-idealities and specifications for the various blocks are obtained in detail. Simulation results obtained from behavioral models of the system in MATLAB and Cadence environment show that a signal-to-noise-and-distortion-ratio (SNDR) of 69.6dB is achieved. A loop filter composed of passive LC sections is utilized in place of integrators or resonators used in traditional modulator implementations. Gain in the forward signal path is realized using active circuits based on simple transconductance stages. A novel method to compensate for excess delay in the loop without using an extra summing amplifier is proposed.
3

System Design of a Wide Bandwidth Continuous-Time Sigma-Delta Modulator

Periasamy, Vijayaramalingam 2010 May 1900 (has links)
Sigma-delta analog-to-digital converters are gaining in popularity in recent times because of their ability to trade-off resolutions in the time and voltage domains. In particular, continuous-time modulators are finding more acceptance at higher bandwidths due to the additional advantages they provide, such as better power efficiency and inherent anti-aliasing filtering, compared to their discrete-time counterparts. This thesis work presents the system level design of a continuous-time low-pass sigma-delta modulator targeting 11 bits of resolution over 100MHz signal bandwidth. The design considerations and tradeoffs involved at the system level are presented. The individual building blocks in the modulators are modeled with non-idealities and specifications for the various blocks are obtained in detail. Simulation results obtained from behavioral models of the system in MATLAB and Cadence environment show that a signal-to-noise-and-distortion-ratio (SNDR) of 69.6dB is achieved. A loop filter composed of passive LC sections is utilized in place of integrators or resonators used in traditional modulator implementations. Gain in the forward signal path is realized using active circuits based on simple transconductance stages. A novel method to compensate for excess delay in the loop without using an extra summing amplifier is proposed.
4

Timing Uncertainty in Sigma-Delta Analog-to-Digital Converters

Strak, Adam January 2006 (has links)
Denna avhandling presenterar en undersökning av orsakerna och effekterna av timingosäkerhet i Sigma-Delta Analog-Digital-Omvandlare, med speciellt fokus på Sigma-Delta av den switchade kapacitanstypen. Det undersökta området för orsakerna till timingosäkerhet är digital klockgenerering och området för effekterna är sampling. Upplösningsnivån på analysen i detta arbete börjar på beteendenivå och slutar på transistornivå. Samplingskretsen är den intuitiva komponenten att söka i efter orsakerna till effekterna av timing-osäkerhet i en Analog-Digital-Omvandlare eftersom transformationen från reell tid till digital tid sker i samplingskretsen. Därför har prestandaeffekterna av timingosäkerhet i den typiska samplingskretsen för switchad kapacitans Sigma-Delta Analog-Digital-Omvandlare analyserats utförligt, modellerats och beskrivits i denna avhandling. Under analysprocessen har idéer om förbättrade samplingskretsar med naturlig tolerans mot timing-osäkerhet utvecklats och analyserats, och presenteras även. Två typer av förbättrade samplingstopologier presenteras: parallelsamplern och Sigma-Delta-samplern. Den första erhåller tolerans mot timing-osäkerhet genom att utnyttja ett teorem inom statistiken medan den andra är tolerant mot timing-osäkerhet p.g.a. spektral formning som trycker ut brus ur signalens frekvensband. Digital klockgenerering är ett fundamentalt steg i genereringen av multipla klocksignaler som behövs t.ex. i switchade kapacitansversioner av Sigma-Delta Analog-Digital-Omvandlare. Klockgeneratorkretsarna konverterar en tidsreferens, d.v.s. en klocksignal, som vanligen kommer från en faslåst loop till multipla tidsreferenser. De två typerna av klockgenereringskretsar som behandlas i denna avhandling används för att skapa två icke-överlappande klockor från en klocksignal. Processen som undersökts och beskrivits är hur matningsspänningsbrus och substratbrus omvandlas till timing-osäkerhet då en referenssignal passerar genom en av ovannämnda klockgenereringskretsar. Resultaten i denna avhandling har erhållits genom olika analystekniker. Modelleringarna och beskrivningarna har utförts från ett matematiskt och fysikaliskt perspektiv. Detta har fördelen av att kunna förutsäga prestandainfluenser som olika kretsparametrar har utan att behöva utföra datorsimuleringar. Svårigheterna med den matematiska och fysikaliska modelleringen är balansgången mellan olöslighet och överförenkling som måste hittas. Den andra infallsvinkeln är användandet av datorbaserade simuleringsverktyg både för beskrivnings- och verifieringsändamål. Simuleringsverktygen som använts är MATLAB och Spectre/Cadence. Som nämnts har deras syfte varit både som modell- och beskrivningsverifiering och även som ett sätt att erhålla kvantitativa resultat. Generellt talat bryter simuleringsverktyg den mentala kopplingen mellan resultat och diverse kretsparametrar och det kan vara svårt att uppnå en solid prestandaförståelse. Dock är det ibland bättre att erhålla ett prestandamått utan full förståelse än inget mått alls. / This dissertation presents an investigation of the causes and effects of timing uncertainty in Sigma-Delta Analog-to-Digital Converters, with special focus on the switched-capacitor Sigma-Delta type. The investigated field for cause of timing uncertainty is digital clock generation and the field for effect is sampling. The granularity level of the analysis in this work begins at behavioral level and finishes at transistor level. The sampling circuit is the intuitive component to look for the causes to the effects of timing uncertainty in an Analog-to-Digital Converter since the transformation from real time to digital time takes place in the sampling circuit. Hence, the performance impact of timing uncertainties in a typical sampling circuit of a switched-capacitor Sigma-Delta Analog-to-Digital Converter has been thoroughly analysed, modelled, and described in this dissertation. During the analysis process, ideas of improved sampling circuits with inherent tolerance to timing uncertainties were conceived and analysed, and are also presented. Two cases of improved sampling topologies are presented: the Parallel Sampler and the Sigma- Delta sampler. The first obtains its timing uncertainty tolerance from taking advantage of a theorem in statistics whereas the second is tolerant against timing uncertainties because of spectral shaping that effectively pushes the in-band timing noise out of the signal band. Digital clock generation is a fundamental step of generating multiple clock signals that are needed for example in switched-capacitor versions of Sigma-Delta Analog-to-Digital Converters. The clock generation circuitry converts a single time reference, i.e. a clock signal, usually coming from a phase-locked loop into multiple time references. The two types of clock-generation circuits that are treated in this dissertation are used to create two nonoverlapping clocks from a single clock signal. The process that has been investigated and described is how power-supply noise and substrate noise transforms into timing uncertainty when a reference signal is passed through one of the aforementioned clock generation circuits. The results presented in this dissertation have been obtained using different analysis techniques. The modelling and descriptions have been done from a mathematical and physical perspective. This has the benefit of predicting the performance impact by different circuit parameters without the need for computer based simulations. The difficulty with the mathematical and physical modelling is the balance that has to be found between intractability and oversimplification. The other angle of approach has been the use of computer based simulations for both description and verification purposes. The simulation tools that have been used in this work are MATLAB and Spectre/Cadence. As mentioned, their purpose has been both for model and description verification and also as a means of obtaining result metrics. Generally speaking, simulation tools mentally decouple the result from the various circuit parameters and reaching a solid performance understanding can be difficult. However, obtaining a performance metric without full comprehension can at times be better than having no metric at all. / QC 20100921
5

Jitter-Tolerance and Blocker-Tolerance of Delta-Sigma Analog-to-Digital Converters for Saw-Less Multi-Standard Receivers

Ahmed, Ramy 1981- 14 March 2013 (has links)
The quest for multi-standard and software-defined radio (SDR) receivers calls for high flexibility in the receiver building-blocks so that to accommodate several wireless services using a single receiver chain in mobile handsets. A potential approach to achieve flexibility in the receiver is to move the analog-to-digital converter (ADC) closer to the antenna so that to exploit the enormous advances in digital signal processing, in terms of technology scaling, speed, and programmability. In this context, continuous-time (CT) delta-sigma (ΔƩ) ADCs show up as an attractive option. CT ΔƩ ADCs have gained significant attention in wideband receivers, owing to their amenability to operate at a higher-speed with lower power consumption compared to discrete-time (DT) implementations, inherent anti-aliasing, and robustness to sampling errors in the loop quantizer. However, as the ADC moves closer to the antenna, several blockers and interferers are present at the ADC input. Thus, it is important to investigate the sensitivities of CT ΔƩ ADCs to out-of-band (OOB) blockers and find the design considerations and solutions needed to maintain the performance of CT ΔƩ modulators in presence of OOB blockers. Also, CT ΔƩ modulators suffer from a critical limitation due to their high sensitivity to the clock-jitter in the feedback digital-to-analog converter (DAC) sampling-clock. In this context, the research work presented in this thesis is divided into two main parts. First, the effects of OOB blockers on the performance of CT ΔƩ modulators are investigated and analyzed through a detailed study. A potential solution is proposed to alleviate the effect of noise folding caused by intermodulation between OOB blockers and shaped quantization noise at the modulator input stage through current-mode integration. Second, a novel DAC solution that achieves tolerance to pulse-width jitter by spectrally shaping the jitter induced errors is presented. This jitter-tolerant DAC doesn’t add extra requirements on the slew-rate or the gain-bandwidth product of the loop filter amplifiers. The proposed DAC was implemented in a 90nm CMOS prototype chip and provided a measured attenuation for in-band jitter induced noise by 26.7dB and in-band DAC noise by 5dB, compared to conventional current-steering DAC, and consumes 719µwatts from 1.3V supply.
6

Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital Converters

Padyana, Aravind 1983- 14 March 2013 (has links)
Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities. This work presents a detailed system-level design methodology for a low-power CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology. A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18μm BiCMOS process.
7

High precision time-to-digital converters for applications requiring a wide measurement range

Keränen, P. (Pekka) 05 April 2016 (has links)
Abstract The aim of this work was to develop time-to-digital converters(TDC) with a wide measurement range of several hundred microseconds and with a measurement precision of a few picoseconds. Because of these requirements, the focus of this work was mainly on TDC architectures based on the Nutt interpolation method, which has several advantages when a long measurement range is a requirement. Compared to conventional data converters the characteristics of a Nutt TDC differ significantly when, for example, quantization errors and linearity errors are considered. In this thesis, the operating principle of a Nutt TDC is analysed and, in particular, the effects of reference clock instabilities are studied giving new insight how the different phase noise processes can be reliably translated into time interval jitter, and how these affect the measurement precision when very long time intervals are measured. Furthermore, these analytical results are confirmed by measurements conducted with a long-range TDC designed as part of this work. Two long-range TDCs have been designed, each based on different interpolator architectures. The first TDC utilises discrete component time-to-voltage converters(TVC) as interpolators. Other key functionality is implemented on an FPGA. The interpolators use Miller integrators to improve the linearity and the single-shot precision of the converter. The TDC has a nominal measurement range of 84ms and it achieves a single-shot precision of 2ps for time intervals shorter than 2ms, after which the precision starts to deteriorate due to the phase noise of the reference clock. In addition to the discrete TDC, an integrated long-range CMOS TDC has been designed with 0.35μm technology. Instead of TVCs, this TDC features cyclic/algorithmic interpolators, which are based on switched-frequency ring oscillators(SRO). The frequency switching is used as a mechanism to amplify quantization error, a key functionality required by any cyclic or a pipeline converter. The interpolators are combined with a 16-bit main counter giving a total range of 327μs. The RMS single-shot precision of the TDC is 4.2ps without any nonlinearity compensation. Furthermore, a calibration functionality implemented partially on-chip ensures that the accuracy of the TDC varies only ±2.5ps in a temperature range of -30C to 70C. Although implemented with fairly old technology, the interpolators’ effective linear range and precision represent state-of-the-art performance. / Tiivistelmä Tämän työn tavoitteena oli kehittää aika-digitaalimuuntia (TDC), joilla on laaja satojen mikrosekuntien mittausalue ja muutaman pikosekunnin kertamittaustarkkuus. Näistä vaatimuksista johtuen tässä työssä keskitytään pääasiassa Nuttin interpolointimenetelmään perustuviin TDC-arkkitehtuureihin. Verrattuna tavanomaisiin datamuuntimiin, Nutt TDC:n toiminta poikkeaa merkittävästi, kun tarkastellaan kvantisointi- ja lineaarisuusvirhettä. Tässä väitöskirjatyössä Nuttin menetelmään perustavan TDC:n toiminta analysoidaan, jonka yhteydessä tutkitaan erityisesti referenssioskillaattorin epästabiilisuuksien vaikutusta mittausepävarmuuteen. Tämän pohjalta vaihekohinan eri kohinaprosessit voidaan luotettavasti muuntaa taajuustason kohinatiheysmittauksista aika-tasossa kuvattavaksi aikavälijitteriksi. Nämä teoreettiset tulokset ovat varmistettu yhdellä osana tätä työtä suunnitellulla pitkän kantaman TDC:llä. Teoreettisen tarkastelun lisäksi kaksi pitkän kantaman TDC:tä on suunniteltu, toteutettu ja testattu. Ensimmäinen näistä perustuu erilliskomponenteilla toteutettuun aika-jännitemuunnokseen (TVC) pohjautuvaan interpolointimenetelmään. Analogisten interpolaattoreiden ohella muu olennainen toiminnallisuus toteutettiin FPGA:lle. Interpolaattorit käyttävät Miller-integraattoreita lineaarisuuden ja kertamittaustarkkuuden parantamiseksi. TDC:n nimellinen mittausalue on 84ms ja sillä saavutetaan 2ps:n kertamittaustarkkuus, kun mitattava aikaväli on lyhyempi kuin 2ms, minkä jälkeen mittaustarkkuus heikkenee referenssioskillaattorin vaihekohinan vaikutuksesta. Toinen pitkän kantaman TDC perustuu 0.35μm:n CMOS teknologialla totetutettuun integroituun piiriin. Aika-jännitemuunnoksen sijasta tämä TDC perustuu sykliseen/algoritmiseen interpolointitekniikkaan, jossa taajuusmoduloitua rengasoskillaattoria(SRO) käytetään kvantisointivirheen vahvistamiseksi. Interpolaattorit ovat yhdistetty 16-bittiseen referenssioskillaattorin laskuriin, jolloin TDC:n mittausalue on noin 327μs. Tämän TDC:n RMS kertamittaustarkkuus on 4.2ps, joka saavutetaan ilman epälineaarisuuden kompensointia. Samalle piirille on lisäksi toteutettu kalibrointitoiminnallisuus, jolla varmistetaan TDC:n hyvä mittaustarkkuus kaikissa olosuhteissa. Mittaustarkkuus poikkeaa maksimissaan vain ±2.5ps, kun lämpötila on välillä -30C-70C. Vaikka TDC on toteutettu kohtalaisen vanhalla CMOS teknologialla, interpolaattoreiden efektiivinen lineaarinen alue ja mittaustarkkuus edustavat alansa huippua.
8

Circuit techniques for programmable broadband radio receivers

Forbes, Travis Michael, 1986- 02 March 2015 (has links)
The functionality provided by mobile devices such as cellular phones and tablets continues to increase over the years, with integration of an ever larger number of wireless standards within a given device. In several of these designs, each standard supported by a device requires its own IC receiver to be mounted on the device’s PCB. In multistandard and multimode radios, it is desirable to integrate all receivers onto the same IC as the digital processors for the standards, in order to reduce device cost and size. Ideally all the receivers should also share a single signal chain. Since each standard has its own requirements for linearity and noise figure, and each standard operates at a different RF carrier frequency, implementing such a receiver is very challenging. Such a receiver could be theoretically implemented using a broadband mixing receiver or by direct sampling by a high-speed analog-to-digital converter (ADC). Broadband mixing requires the use of a harmonic rejection mixer (HRM) or tunable band pass filter to remove harmonic mixing effects, which in the past have suffered from a large primary clock tuning range and high power consumption. However, direct sampling of the RF input requires a high-speed ADC with large dynamic range which is typically limited by clock timing skew, clock jitter, or harmonic folding. In this dissertation, techniques for programmable broadband radio receivers are proposed. A local oscillator (LO) synthesis method within HRMs is proposed which reduces the required primary clock tuning range in broadband receivers. The LO synthesis method is implemented in 130-nm CMOS. A clocking technique is introduced within the two-stage HRM, which helps in achieving state-of-the-art harmonic rejection performance without calibration or harmonic filtering. An analog frequency synthesis based broadband channelizer is proposed using the LO synthesis method which is capable of channelizing a broadband input using a single mixing stage and primary clock frequency. A frequency-folded ADC architecture is proposed which enables high-speed sampling with high dynamic range. A receiver based on the frequency-folded ADC architecture is implemented in 65-nm CMOS and achieves a sample rate of 2-GS/s, a mean 49-dB SNDR, and 8.5-dB NF. / text

Page generated in 0.0814 seconds