• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 129
  • 1
  • Tagged with
  • 132
  • 132
  • 91
  • 76
  • 62
  • 57
  • 53
  • 52
  • 33
  • 31
  • 30
  • 27
  • 26
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Projeto de estruturas considerando o efeito da não-linearidade geométrica utilizando o método de otimização topológica. / Design of structures considering the nonlinear geometric effect using topology optimization method.

Ricardo Doll Lahuerta 11 January 2012 (has links)
Este trabalho propõe estudar o projeto de estruturas submetidas a grandes deslocamentos utilizando o Método de Otimização Topológica (MOT). O MOT é um método numérico capaz de fornecer de forma sistemática a distribuição ótima de material no domínio de uma estrutura de forma a atender a um dado requisito de projeto, por exemplo, o valor de flexibilidade máxima permitida em uma estrutura. Desde sua introdução, há quase três décadas, o MOT ganhou popularidade na área acadêmica e na indústria. Até o presente momento (2011), a maioria dos trabalhos relacionados com o método tem se preocupado com a otimização de estruturas com o comportamento linear, ou seja, pequenos deslocamentos. Um pequeno número de artigos e trabalhos tem sido relacionado com a modelagem e otimização topológica de estruturas submetidas a efeitos não-lineares. Este trabalho propõe compilar as formulações descritas na literatura e agregar novas técnicas na implementação da OT de forma a melhorar a robustez na obtenção de resultados sob não-linearidade geométrica. O MOT para o comportamento não-linear geométrico neste trabalho foi implementado utilizando o modelo de material SIMP. O comportamento não-linear geométrico é representado utilizando a formulação Lagrangiana para as leis de material de Kirchhoff-Saint Venant e neo-Hookiana. Ambas as leis de material foram implementadas utilizando o método de elementos finitos (MEF) e o equilíbrio estático da estrutura é obtido através de uma rotina incremental e iterativa de Newton incluindo todos os elementos (inclusive os de baixa densidade) dentro do domínio de projeto. A sensibilidade da função objetivo é deduzida utilizando o método adjunto e o problema de otimização é resolvido utilizando o Método das Assíntotas Móveis (MAM) em conjunto com uma função de Relaxação proposta para estabilizar a solução de OT não-linear. A função de projeção não-linear em conjunto com o Método da Continuação é utilizada para eliminar o problema de tabuleiro e independência de malha, melhorando a convergência dos resultados. A função objetivo para minimização da flexibilidade no ponto de aplicação do carregamento é testada, considerando um carregamento fixo. Neste trabalho, os exemplos mostram que as diferenças na rigidez das estruturas otimizadas utilizando modelagem linear e não-linear são geralmente pequenas para pequenos carregamentos, mas elas podem ser grandes em certos casos envolvendo grandes cargas, acarretando em instabilidades na estrutura, o que pode degenerar a solução obtida. / This work proposes studying the design of structures undergoing large displacement using Topology Optimization Method (TOM). The TOM is a numerical method capable of synthesizing the basic layout of a mechanical structure accomplishing to a given design requirement, for example the maximum strain energy allowed in the structure. Since its introduction nearly three decades, TOM has gained widespread popularity in academia and industry. So far, most papers dealing with the method have been concerned with the optimization of structures with linear geometric and material behavior. Even now a small number of works and articles have been concerned with the modeling and topology optimization of structures undergoing nonlinear effects. This work proposes to compile the formulations described in the literature and adding new techniques to improve the robustness for obtaining results of OT under geometric nonlinearity. The TOM for geometric nonlinear behavior in this work is implemented with Solid Isotropic Microstructure with Penalization (SIMP) material model. The geometrically nonlinear behavior of the structures is modeled using a Lagrangean description for hyperelastic constitutive models for Saint Venant-Kirchhoff and neo-Hookean. Both constitutive models are implemented using the Finite Element Method (FEM) and the static equilibrium of the structure is obtained using an incremental and iterative Full-Newton Method considering all elements and internal force of the design domain (elements called \"voids\"). The sensitivity of the objective function is derived using the adjoint method and the optimization problem is solved using the Optimality Criteria (OC) method and Method of Moving Asymptotes (MMA) together with a Relaxation Function proposed to stabilize the TO nonlinear solution. The nonlinear projection function in conjunction with the Continuation Method is used to obtain checkerboard-free and mesh-independent designs and to improve the convergence results. The objective function of end-compliance is tested, by minimizing it for a fixed load. In this work, some examples show that differences in stiffness of optimized structures using linear and nonlinear modeling are generally small, however they can be large in certain cases involving buckling or bifurcation point, that degenerate the solution obtained.
132

Projeto, otimização e análise de incertezas de um dispositivo coletor de energia proveniente de vibrações mecânicas utilizando transdutores piezelétricos e circuito ressonante / Design, optimization and uncertainty analysis of a mechanical vibration energy harvesting device using piezoelectric transducers and resonant circuit

Tatiane Corrêa de Godoy 05 November 2012 (has links)
O uso de materiais piezelétricos no desenvolvimento de dispositivos para o aproveitamento de energia provinda de vibrações mecânicas, Energy Harvesting, tem sido largamente estudado na última década. Materiais piezelétricos podem ser encontrados na forma de finas camadas ou pastilhas, sendo facilmente integradas a estruturas sem aumento significativo de massa. A conversão de energia mecânica em energia elétrica se dá graças ao acoplamento eletromecânico dos materiais piezelétricos. A maioria das publicações encontradas na literatura exploram o uso de dispositivos eletromecânicos ressonantes, sintonizados na frequência de operação da estrutura, maximizando assim, a energia elétrica de saída dada uma certa condição de operação. O desempenho desses dispositivos ressonantes para coletar e armazenar energia é altamente dependente da adequada sintonização da sua frequência de ressonância com a frequência de operação do sistema/estrutura. Este trabalho apresenta o projeto, otimização e análise de incertezas de um dispositivo coletor/armazenador de energia que consiste em uma placa sob duas condições de contorno, engastada-livre (EL) e deslizante-livre (DL), com massa sísmica e materiais piezelétricos conectados a um circuito shunt. Um modelo em elementos finitos de placa laminada piezelétrica conectada a circuitos R e RL é utilizado combinando as teorias de camada equivalente e deformação de cisalhamento de primeira ordem. A disposição/quantidade de material piezelétrico bem como a massa sísmica acoplados à estrutura foram otimizadas utilizando-se um Algoritmo Genético, levando em conta análises mecânica (modelo mecânico, geometria, peso) e elétrica (modelo elétrico, circuito armazenador). Além disso, o efeito de incertezas dos parâmetros dielétrico e piezelétrico do transdutor, e da indutância elétrica ligada em série ao circuito coletor/armazenador de energia foi estudado. Os resultados indicam que a inclusão de uma indutância sintética ao circuito pode melhorar a coleta de energia em uma banda de frequência e, ainda, que a otimização geométrica pode reduzir a quantidade de material piezelétrico sem no entanto diminuir significativamente a energia gerada. / The use of piezoelectric materials in the development of devices to harvest energy from mechanical vibrations (Energy Harvesting) has been widely studied in the last decade. Piezoelectric materials can be found in the form of thin layers or patches easily integrated into structures without significant mass increase. The conversion of mechanical energy into electric power is provided by the electromechanical coupling of piezoelectric materials. Most publications in the literature explore the use of resonant electromechanical devices, tuned to the operating frequency of the host structure, thus maximizing the power output given a certain operating condition. The performance of these resonant devices to harvest and store energy is highly dependent on the proper tuning of its resonance frequency with the operation frequency of the system/structure. This work presents a design, optimization and uncertainty analysis of energy harvester device consisting of a plate with tip mass and piezoelectric materials connected to shunt circuits. Two boundary conditions are used for the plate, cantilever (EL) and sliding-free (DL). A coupled finite element model with R and RL circuits, combining equivalent single layer and first order shear deformation theories, was used. The distribution and volume of piezoelectric material and the tip mass coupled to the structure were optimized using a Genetic Algorithm, accounting for both mechanical (mechanical model, geometry, weight) and electric (electric model, storer circuit) analyses. Furthermore, the effect of uncertainties of transducer dielectric and piezoelectric constants and electric inductance connected in series with harvesting circuit was studied. The results indicate that the inclusion of a synthetic inductance can improve energy harvesting performance over a frequency range and also that the geometric optimization may reduce the piezoelectric material volume without diminishing significantly the harvested energy.

Page generated in 0.0235 seconds