• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Xyloglucan-based polymers and nanocomposites – modification, properties and barrier film applications

Kochumalayil Jose, Joby January 2012 (has links)
Biopolymers from renewable resources are of interest for packaging applications as an alternative to conventional petroleum-based polymers. One of the major application areas for biopolymers is food packaging, where a candidate polymer should meet critical requirements such as mechanical and oxygen barrier performance, also in humid conditions. Starch has long been used in certain packaging applications, either in plasticized state or blended with other polymers. However, native starch has high sensitivity to water and low mechanical and barrier performance. Recently, wood-derived hemicelluloses have been extensively studied as oxygen barrier films, but suffer from low film-forming ability and mechanical performance. In the present study, xyloglucan (XG) from tamarind seed waste is explored as an alternative high-performance biopolymer in packaging applications. The obstacles of polysaccharides in terms of moisture sensitivity and processability are addressed in this thesis. In Paper I, film properties of XG were studied. XG has a cellulose backbone, but unlike cellulose, it is mostly soluble in water forming highly robust films. Moisture sorption isotherms, tensile tests and dynamic mechanical thermal analysis were performed. Enzymatic modification (partial removal of galactose in side chains of XG) was performed to study the effect of galactose on solubility and filmforming characteristics. XG films showed lower moisture sorption than starch. Stiffness and tensile strength were very high of the order of 4 GPa and 70 MPa respectively, with considerable ductility and toughness. The thermomechanical performance was very high with a softening temperature near 260 ºC. In Paper II, several plasticizers were studied in order to facilitate thermal processing of XG films: sorbitol, urea, glycerol and polyethylene oxide. Films of different compositions were prepared and studied for thermomechanical and tensile properties. Highly favorable characteristics were found with XG/sorbitol system. A large drop in glass transition temperature (Tg) of XG of the order of 100 ºC with 20 - 30 wt% sorbitol was observed with an attractive combination of increased toughness. In Paper III, XG was chemically modified and the structure-property relationship of modified XG studied. XG modification was performed using an approach involving periodate oxidation followed by reduction. The oxidation is highly regioselective, where the side chains of XG are mostly affected with the cellulose backbone well-preserved as noticed from MALDI-TOF-MS and carbohydrate analysis. Films were cast from water and characterized by dynamic mechanical thermal analysis, dynamic water vapor sorption, oxygen transmission analysis and tensile tests. Property changes were interpreted from structural changes. The regioselective modification results in new types of cellulose derivatives without the need for harmful solvents. In Paper IV, moisture durability of XG was addressed by dispersing montmorillonite (MTM) platelets in water suspension. Oriented bionanocomposite coatings with strong in-plane orientation of clay platelets were prepared. A continuous water-based processing approach was adopted in view of easy scaling up. The resulting nanocomposites were characterized by FE-SEM, TEM, and XRD. XG adsorption on MTM was measured by quartz crystal microbalance analysis. Mechanical and gas barrier properties were measured, also at high relative humidity. The reinforcement in mechanical properties and effects on barrier properties were remarkable, also in humid conditions. In Paper V, cross-linked XG/MTM composite was prepared with high clay content (ca. 45 vol%) by an industrially scalable “paper-making” method. Instead of using cross-linking molecules, cross-linking sites were created on the XG chain by selective oxidation of side chains. The in-plane orientation of MTM platelets were studied using XRD and FE-SEM. The mechanical properties and barrier performance were evaluated for the resulting 'nacre-mimetic' nanocomposites. The elastic modulus of cross-linked nanocomposites is as high as 30 GPa, one of the stiffest bionanocomposites reported. / <p>QC 20121107</p>
2

Films and composites based on chitosan, wheat gluten or whey proteins -Their packaging related mechanical and barrier properties

Gällstedt, Mikael January 2004 (has links)
No description available.
3

Layer-by-Layer Nanocoatings with Flame Retardant and Oxygen Barrier Properties: Moving Toward Renewable Systems

Laufer, Galina 1985- 14 March 2013 (has links)
Numerous studies have focused on enhancing the flame retardant behavior of cotton and polyurethane foam. Some of the most commonly used treatments (e.g., brominated compounds) have raised concerns with regard to toxicity and environmental persistence. These concerns have led to significant research into the use of alternative approaches, including polymer nanocomposites prepared from more environmentally benign nanoparticles. These particles migrate to the surface from the bulk during fire exposure to form a barrier on the surface that protects the underlying polymer. This theory of fire suppression in bulk nanocomposites inspired the use of layer-by-layer (LbL) assembly to create nanocoatings in an effort to produce more effective and environmentally-benign flame retardant treatments. Negatively charged silica nanoparticles of two different sizes were paired with either positively charged silica or cationic polyethylenimine (PEI) to create thin film assemblies. When applying these films to cotton fabric, all coated fabrics retained their weave structure after being exposed to a vertical flame test, while uncoated cotton was completely destroyed. Micro combustion calorimetry confirmed that coated fabrics exhibited a reduced peak heat release rate, by as much as 20% relative to the uncoated control. Even so, this treatment would not pass the standard UL94 vertical flame test, necessitating a more effective treatment. Positively- charged chitosan (CH) was paired with montmorillonite (MMT) clay to create a renewable flame retardant nanocoating for polyurethane foam. This coating system completely stops the melting of a flexible polyurethane foam when exposed to direct flame from a butane torch, with just 10 bilayers (~ 30 nm thick). The same coated foam exhibited a reduced peak heat release rate, by as much as 52%, relative to the uncoated control. This same nanobrick wall coating is able to impart gas barrier to permeate plastic film. Multilayered thin films were assembled with "green" food contact approved materials (i.e., chitosan, polyacrylic acid (PAA) and montmorillonite clay). Only ten CH-PAA-CH-MMT quadlayers (~90 nm thick) cause polylactic acid (PLA) film to behave like PET in terms of oxygen barrier. A thirty bilayer CH-MMT assembly (~100 nm thick) on PLA exhibits an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation (<= 0.005 cm^3/(m^2*day*atm)). This is the same recipe used to impart flame retardant behavior to foam, but it did not provide effective FR to cotton fabric, so a very different recipe was used. Thin films of fully renewable electrolytes, chitosan and phytic acid (PA), were deposited on cotton fabric in an effort to reduce flammability through an intumescent effect. Altering the pH of aqueous deposition solutions modifies the composition of the final nanocoating. Fabrics coated with highest PA content multilayers completely extinguished the flame and reduced peak heat release (pkHRR) and total heat release of 60% and 76%, respectively. This superior performance is believed to be due to high phosphorus content that enhances the intumescent behavior of these nanocoatings.
4

Films and composites based on chitosan, wheat gluten or whey proteins -Their packaging related mechanical and barrier properties

Gällstedt, Mikael January 2004 (has links)
No description available.
5

POLYMER BLENDS, COMPOSITES AND AEROGEL MODIFICATION BY INNOVATIVE APPROACHES

Johnson, Jack Royce, III January 2011 (has links)
No description available.
6

Layer-by-layer Assembly of Nanobrick Wall Ultrathin Transparent Gas Barrier Films

Priolo, Morgan Alexander 2012 May 1900 (has links)
Thin layers with high barrier to oxygen and other gases are a key component to many packaging applications, such as flexible electronics, food, and pharmaceuticals. Vapor deposited thin films provide significant gas barrier, but are prone to cracking when flexed, require special, non-ambient processing environments, and can involve complex fabrication when layered with polymers. The addition of clay into polymers can enhance barrier properties relative to the neat polymer; however, these composites are subject to clay aggregation at high loadings, which leads to increased opacity and random platelet alignment that ultimately reduce barrier improvement. Layer-by-layer (LbL) assembly is capable of producing thin films that exhibit super gas barrier properties, while remaining flexible and completely transparent. Montmorillonite (MMT) clay and branched polyethylenimine (PEI) were deposited via LbL assembly to create gas barrier films that can be tailored by altering the pH of the PEI deposition solution or the concentration of the MMT suspension. Films grow linearly as a function of layers deposited, where increasing PEI pH increases spacing between clay layers and increasing MMT concentration increases thin film clay content. An oxygen transmission rate (OTR) below the detection limit of commercial instrumentation (< 0.005 cm3/m2•day•atm) is observed after 70 layers of 0.2 wt % MMT or 24 layers of 2 wt % MMT are deposited with pH 10 PEI onto 179 µm thick poly(ethylene terephthalate) (PET) film. Three-component films of PEI, poly(acrylic acid) (PAA), and MMT grow exponentially as a function of PEI/PAA/PEI/MMT quadlayers deposited. A transparent, ultrathin film of only four quadlayers deposited onto PET exhibits the lowest oxygen permeability ever reported for any thin film material, at only 51 nm thick. Finally, the first example of LbL assembly using large aspect ratio vermiculite (VMT) clay was performed. PEI/VMT films grow linearly as a function of layers deposited and exhibit 95 % light transmission with 97 wt % VMT. The barrier of these films is due to the highly aligned nanobrick wall structure that creates a tortuous path for permeating molecules. Coupling high flexibility, transparency, and barrier, these coatings are good candidates for a variety of packaging applications.
7

Compression-moulded and multifunctional cellulose network materials

Galland, Sylvain January 2013 (has links)
Cellulose-based materials are widely used in a number of important applications (e.g. paper, wood, textiles). Additional developments are suggested by the growing interest for natural fibre-based composite and nanocomposite materials. The motivation is not only in the economic and ecological benefits, but is also related to advantageous properties and characteristics. The objective of this thesis is to provide a better understanding of process-structure-property relationships in some novel cellulose network materials with advanced functionalities, and showing potential large-scale processability. An important result is the favourable combination of mechanical properties observed for network-based cellulose materials. Compression-moulding of cellulose pulp fibres under high pressure (45 MPa) and elevated temperature (120 – 180 oC) provides an environmentally friendly process for preparation of stiff and strong cellulose composite plates. The structure of these materials is characterized at multiple scales (molecular, supra-molecular and microscale). These observations are related to measured reduction in water retention ability and improvement in mechanical properties. In a second part, cellulose nanofibrils (NFC) are functionalized with in-situ precipitated magnetic nanoparticles and formed into dense nanocomposite materials with high inorganic content. The precipitation conditions influence particle size distributions, which in turn affect the magnetic properties of the material. Besides, the decorated NFC network provides high stiffness, strength and toughness to materials with very high nanoparticle loading (up to 50 vol.%). Subsequently, a method for impregnation of wet NFC network templates with a thermosetting epoxy resin is developed, enabling the preparation of well-dispersed epoxy-NFC nanocomposites with high ductility and moisture durable mechanical properties. Furthermore, cellulose fibrils interact positively with the epoxy during curing (covalent bond formation and accelerated curing). Potential large scale development of epoxy-NFC and magnetic nanocomposites is further demonstrated with the manufacturing of 3D shaped compression-moulded objects. Finally, the wet impregnation route developed for epoxy is adapted to prepare UV-curable NFC nanocomposite films with a hyperbranched polymer matrix. Different chemical modifications are applied to the NFC in order to obtain moisture durable oxygen barrier properties. / <p>QC 20131111</p>
8

Development of a Humidity-Resistant Coating to Impart High Oxygen Barrier Performance to Food Packaging Films

Cox, Ryan Yinghua 01 June 2017 (has links)
Oxygen barrier coatings have the potential to greatly extend the lifetime of certain food products by incorporating them into existing food packaging. Present technologies face definite challenges of maintaining high performance, while attaining simple and inexpensive preparation methods. The oxygen barrier effect obtained with these coatings is also susceptible to a plasticization effect when exposed to high humidity, since water vapor molecules are readily soluble in typically hydrophilic resins. In this work, we demonstrate a 1 – 2 micron thick oxygen barrier coating, prepared on a 12 micron poly(ethylene terephthalate) substrate, that has oxygen transmission rates as low as 1.44 cc m-2 day-1 under standard conditions and can maintain similar oxygen barrier performance at high humidity. This degree of oxygen barrier meets the standard of 1 – 10 cc m-2 day-1 established for food packaging applications. The coating is prepared through use of sol-gel chemistry between poly(vinyl alcohol) and vinyltrimethoxsilane molecules, which form a strong network resin through hydrolysis and condensation reactions. The formulation of these oxygen barrier coatings allows for variability of solids percentage and viscosity without significant change in performance. The ability to scale up the preparation of these coated films was tested successfully on an industrial flexographic printing press.
9

Improved Properties of Poly (Lactic Acid) with Incorporation of Carbon Hybrid Nanostructure

Kim, Junseok 01 July 2016 (has links)
Poly(lactic acid) is biodegradable polymer derived from renewable resources and non-toxic, which has become most interested polymer to substitute petroleum-based polymer. However, it has low glass transition temperature and poor gas barrier properties to restrict the application on hot contents packaging and long-term food packaging. The objectives of this research are: (a) to reduce coagulation of graphene oxide/single-walled carbon nanotube (GOCNT) nanocomposite in poly(lactic acid) matrix and (b) to improve mechanical strength and oxygen barrier property, which extend the application of poly(lactic acid). Graphene oxide has been found to have relatively even dispersion in poly(lactic acid) matrix while its own coagulation has become significant draw back for properties of nanocomposite such as gas barrier, mechanical properties and thermo stability as well as crystallinity. Here, single-walled carbon nanotube was hybrid with graphene oxide to reduce irreversible coagulation by preventing van der Waals of graphene oxide. Mass ratio of graphene oxide and carbon nanotube was determined as 3:1 at presenting greatest performance of preventing coagulation. Four different weight percentage of GOCNT nanocomposite, which are 0.05, 0.2, 0.3 and 0.4 weight percent, were composited with poly(lactic acid) by solution blending method. FESEM morphology determined minor coagulation of GOCNT nanocomopsite for different weight percentage composites. Insignificant crystallinity change was observed in DSC and XRD data. At 0.4 weight percent, it prevented most of UV-B light but was least transparent. GOCNT nanocomposite weight percent was linearly related to ultimate tensile strength of nanocomposite film. The greatest ultimate tensile strength was found at 0.4 weight percent which is 175% stronger than neat poly(lactic acid) film. Oxygen barrier property was improved as GOCNT weight percent increased. 66.57% of oxygen transmission rate was reduced at 0.4 weight percent compared to neat poly(lactic acid). The enhanced oxygen barrier property was ascribed to the outstanding impermeability of hybrid structure GOCNT as well as the strong interfacial adhesion of GOCNT and poly(lactic acid) rather than change of crystallinity. Such a small amount of GOCNT nanocomposite improved mechanical strength and oxygen barrier property while there were no significant change of crystallinity and thermal behavior found. / Master of Science
10

Oxygen Transport as a Structure Probe for Amorphous Polymeric Systems

Liu, Richard Yufeng 05 January 2005 (has links)
No description available.

Page generated in 0.0291 seconds