• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Machine Learning for Classification of Temperature Controlled Containers Using Heavily Imbalanced Data / Maskininlärning för klassificering av temperatur reglerbara containrar genom användande av extremt obalanserad data

Ranjith, Adam January 2022 (has links)
Temperature controllable containers are used frequently in order to transport pharmaceutical cargo all around the world. One of the leading manufacturing companies of these containers has a method for detecting containers with a faulty cooling system before making a shipment. However, the problem with this method is that the model tends to miss-classify containers. Hence, this thesis aims to investigate if machine learning usage would make classification of containers more accurate. Nonetheless, there is a problem, the data set is extremely imbalanced. If machine learning can be used to improve container manufacturing companies fault detection systems, it would imply less damaged and delayed pharmaceutical cargo which could be vital. Various combinations of machine learning classifiers and techniques for handling the imbalance were tested in order to find the most optimal one. The Random Forest classifier when using oversampling was the best performing combination which performed about equally as good as the company’s current method, with a recall score of 92% and a precision score of 34%. Earlier there were no known papers on machine learning for classification of temperature controllable containers. However, now other manufacturing companies could favourably use the concepts and methods presented in this thesis in order to enhance the effectiveness of their fault detection systems and consequently improve the overall shipping efficiency of pharmaceutical cargo. / Temperatur reglerbara containrar används frekvent inom medicinsk transport runt om i hela världen. Ett ledande företag som är tillverkare av dessa containrar använder sig av en metod för att upptäcka containrar med ett felaktigt kylsystem redan innan de hunnit ut på en transport. Denna metod är fungerande men inte perfekt då den tenderar att felaktigt klassificera containrar. Detta examensarbete är en utredande avhandling för att ta reda på om maskininlärning kan användas för att förbättra klassificeringen av containrar. Det finns dock ett problem, data setet är extremt obalanserat. Om maskininlärning kan användas för att förbättra felsökningssystemen hos tillverkare av temperatur reglerbara containrar skulle det innebära mindre förstörda samt mindre försenade medicinska transporter vilket kan vara livsavgörande. Ett urval av kombinationer mellan maskininlärnings modeller och tekniker för att hantera obalanserad data testade för att avgöra vilken som är optimal. Klassificeraren Random Forest ihop med över-sampling resulterade i best prestanda, ungefär lika bra som företagets nuvarande metod. Tidigare har det inte funnits några kända rapporter om användning av maskininlärning för att klassificera temperaturer reglerbara containrar. Nu kan dock andra tillverkare av containrar använda sig av koncept och metoder som presenterades i avhandlingen för att optimera deras felsökningssystem och således förbättra den allmänna effektiviteten inom medicinsk transport.
2

Personalizing the post-purchase experience in online sales using machine learning. / Personalisering av efterköpsupplevelsen inom onlineförsäljning med hjälp av maskininlärning.

Kamau, Nganga, Dehoky, Dylan January 2021 (has links)
Advances in machine learning, together with an abundance of available data has lead to an explosion in personalized offerings and being able to predict what consumers want, and need without them having to ask for it. During the last decade, it has become a multi billion dollar industry, and a capability upon many of the leading tech companies rely on in their business model. Indeed, in today's business world, it is not only a capability for competitive advantage, but in many cases a matter of survival. This thesis aims to create a machine learning model able to predict customers interested in an upselling opportunity of changing their payment method after completing a purchase with the Swedish payment solutions company, Klarna Bank. Hence, the overall aim is to personalize the customer experience on the confirmation page. Two gradient boosting methods and one deep learning method were trained, evaluated and compared for this task. A logistic regression model was also trained and used as a baseline model. The results showed that all models performed better than the baseline model, with the gradient boosting methods showing the best performance. All of the models were also able to outperform the current solution with no personalization, with the best model reducing the amount of false positives by 50%. / Tillgång till stora datamängder har tillsammans med framsteg inom maskininlärning resulterat i en explotionsartad ökning i personifierade erbjudanden och möjligheter att förutspå kunders behov. Det har under det senaste decenniet utvecklats till en multimiljardindustri och en förmåga som många av de ledande techbolagen i världen förlitar sig på i sina verksamheter. I många fall är det till och med en förutsättning för att överleva i dagens industrilandskap. Det här examensarbetet ämnar att skapa en maskininlärningsmodell som är kapabel till att förutspå kunders intresse för att "uppgradera" sin betalmetod efter ett slutfört köp med den svenska betallösningsföretaget Klarna Bank. Konceptet att erbjuda en kund att uppgradera en redan vald produkt eller tjänst är på engelska känt som upselling. Det övergripande syftet för detta projekt är därför att skapa en personifierad kundupplevelse på Klarnas bekräftelsesida. Följaktligen implementerades och utvärderades två så kallade gradient boosting - metoder samt en djupinlärningsmetod. Vidare implementerades även en logistisk regressionsmodell som basmodell för att jämföra de övriga modeller med. Resultaten visar hur alla modeller överträffade den tillämpade basmodellen, där gradient boosting-metoderna påvisade bättre resultat än djupinlärningsmetoden. Därtill visar alla modeller en förbättring i jämförelse med dagens lösning på Klarnas bekräftelssesida, utan personifiering, där den bästa modellen förbättrade utfallet med 50%.
3

Performance comparison of data mining algorithms for imbalanced and high-dimensional data

Rubio Adeva, Daniel January 2023 (has links)
Artificial intelligence techniques, such as artificial neural networks, random forests, or support vector machines, have been used to address a variety of problems in numerous industries. However, in many cases, models have to deal with issues such as imbalanced data or high multi-dimensionality. This thesis implements and compares the performance of support vector machines, random forests, and neural networks for a new bank account fraud detection, a use case defined by imbalanced data and high multi-dimensionality. The neural network achieved both the best AUC-ROC (0.889) and the best average precision (0.192). However, the results of the study indicate that the difference between the models’ performance is not statistically significant to reject the initial hypothesis that assumed equal model performances. / Artificiell intelligens, som artificiella neurala nätverk, random forests eller support vector machines, har använts för att lösa en mängd olika problem inom många branscher. I många fall måste dock modellerna hantera problem som obalanserade data eller hög flerdimensionalitet. Denna avhandling implementerar och jämför prestandan hos support vector machines, random forests och neurala nätverk för att upptäcka bedrägerier med nya bankkonton, ett användningsfall som definieras av obalanserade data och hög flerdimensionalitet. Det neurala nätverket uppnådde både den bästa AUC-ROC (0,889) och den bästa genomsnittliga precisionen (0,192). Resultaten av studien visar dock att skillnaden mellan modellernas prestanda inte är statistiskt signifikant för att förkasta den ursprungliga hypotesen som antog lika modellprestanda.
4

Convolutional neural network based object detection in a fish ladder : Positional and class imbalance problems using YOLOv3 / Objektdetektering i en fisktrappa baserat på convolutional neural networks : Positionell och kategorisk obalans vid användning av YOLOv3

Ekman, Patrik January 2021 (has links)
Hydropower plants create blockages in fish migration routes. Fish ladders can serve as alternative routes but are complex to install and follow up to help adapt and develop them further. In this study, computer vision tools are considered in this regard. More specifically, object detection is applied to images collected in a hydropower plant fish ladder to localise and classify wild, farmed and unknown fish labelled according to the presence, absence or uncertainty of an adipose fin. Fish migration patterns are not deterministic, making it a challenge to collect representative and balanced data to train a model that is resilient to changing conditions. In this study, two data imbalances are addressed by modifying a YOLOv3 baseline model: foreground-foreground class imbalance is targeted using hard and soft resampling and positional imbalance using translation augmentation. YOLOv3 is a convolutional neural network predicting bounding box coordinates, class probabilities and confidence scores simultaneously. It divides images into grids and makes predictions based on grid cell locations and anchor box offsets. Performance is estimated across 10 random data splits and different bounding box overlap thresholds, using (mean) average precision as well as recall, precision and F1 score estimated at optimal validation set confidence thresholds. The Wilcoxon signed-ranks test is used for determining statistical significance. In experiments, the best performance was observed on wild and farmed fish, with F1 scores reaching 94.8 and 89.0 percent respectively. The inconsistent appearance of unknown fish appears harder to generalise to, with a corresponding F1 score of 65.7 percent. Soft sampling but especially translation augmentation contributed to enhanced performance and reduced variance, implying that the baseline model is particularly sensitive to positional imbalance. Spatial dependencies introduced by YOLOv3’s grid cell strategy likely produce local bias or overfitting. An experimental evaluation highlight the importance of not relying on a single data split when evaluating performance on a moderately large or custom dataset. A key challenge observed in experiments is the choice of a suitable confidence threshold, influencing the dynamics of the results. / Vattenkraftverk blockerar fiskars vandringsvägar. Fisktrappor kan skapa alternativa vägar men är komplexa att installera och följa upp för vidare anpassning och utveckling. I denna studie betraktas datorseende i detta avseende. Mer specifikt appliceras objektdetektering på bilder samlade i en fisktrappa i anslutning till ett vattenkraftverk, med målet att lokalisera och klassificera vilda, odlade och okända fiskar baserat på förekomsten, avsaknaden eller osäkerheten av en fett-fena. Fiskars migrationsmönster är inte deterministiska vilket gör det svårt att samla representativ och balanserad data för att trana en modell som kan hantera förändrade förutsättningar. I denna studie addresseras två obalanser i datan genom modifikation av en YOLOv3 baslinjemodell: klass-obalans genom hård och mjuk återanvändning av data och positionell obalans genom translation av bilder innan träning. YOLOv3 är ett convolutional neural network som simultant förutsäger avgränsnings-lådor, klass-sannolikheter och prediktions-säkerhet. Bilder delas upp i rutnätceller och prediktioner görs baserat på cellers position samt modifikation av fördefinierade avgränsningslådor. Resultat beräknas på 10 slumpmässiga uppdelningar av datan och för olika tröskelvärden för avgränsningslådors överlappning. På detta beräknas (mean) average precision, liksom recall, precision och F1 score med tröskelvärden för prediktions-säkerhet beräknat på valideringsdata. Wilcoxon signed-ranks test används för att avgöra statistisk signifikans. Bäst resultat observeras på vilda och odlade fiskar, med F1 scores som når 94.8 respektive 89.0 procent. Okända fiskars inkonsekventa utseenden verkar svårare att generalisera till, med en motsvarande F1 score på 65.7 procent. Mjuk återanvändning av data men speciellt translation bidrar till förbättrad prestanda och minskad varians, vilket pekar på att baslinjemodellen är särskilt känslig för positionell obalans. Spatiala beroenden skapade av YOLOv3s rutnäts-strategi producerar troligen lokal partiskhet eller överträning. I en experimentell utvärdering understryks vikten av multipel uppdelning av datan vid evaluering på ett måttligt stort eller egenskapat dataset. Att välja tröskelvärdet för prediktions-säkerhet anses utmanande och påverkar resultatens dynamik.

Page generated in 0.0918 seconds