Spelling suggestions: "subject:"obata, teorema dde"" "subject:"obata, teorema dee""
1 |
O teorema de Alexandrov / The theorem of Alexandrov.Silva Neto, Gregorio Manoel da 04 August 2009 (has links)
The goal of this dissertation is to present a R. Reilly's demonstration of the theorem of Alexandrov . The theorem states that The only compact hypersurfaces, conected, of constant mean curvature, immersed in Euclidean space are spheres. The theorem of Alexandrov was proved by A. D. Alexandrov in the article Uniqueness Theorems for Surfaces in the Large V, published in 1958 by Vestnik Leningrad University, volume 13, number 19, pages 5 to 8. In his demonstration, Alexandrov used the famous Principle of tangency, introduced by him in that article. In the year 1962, M. Obata shown in Certain Conditions for a Riemannian Manifold to be isometric With the Sphere, published by the Journal of Mathematical Society of Japan, volume 14, pages 333 to 340, that a Riemannian Manifold M, compact, connected and without boundary, is isometric to a sphere, since the Ricci curvature of M satisfies certain lower bound. This theorem solves the problem of finding manifolds that reach equality in the estimate of Lichnerowicz for the first eigenvalue. In 1977, R. Reilly, in the article Applications of the Hessian operator in a Riemannian Manifold, published in Indianna University Mathematical Journal, volume 23, pages 459 to 452, showed a generalization of the Obata theorem for compact manifolds with boundary. As an example of the technique developed in this demonstration, he presents a new demonstration of the theorem of Alexandrov. This demonstration, as well as the techniques involved are the object of study of this work. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O objetivo desta dissertação é apresentar uma demonstração de R. Reilly para o Teorema de Alexandrov. O teorema estabelece que As únicas hipersuperfícies compactas, conexas, de curvatura média constante, mergulhadas no espaço Euclidiano são as esferas. O teorema de Alexandrov foi provado por A. D. Alexandrov no artigo Uniqueness Theorems for Surfaces in the Large V, publicado em 1958 pela Vestnik Leningrad University, volume 13, número 19, páginas 5 a 8. Em sua demonstração, Alexandrov usou o famoso Princípio de Tangência, introduzido por ele no citado artigo.
No ano de 1962, M. Obata demonstrou em Certain Conditions for a Riemannian Manifold to be Isometric With a Sphere, publicado pelo Journal of Mathematical Society of Japan, volume 14, páginas 333 a 340, que uma variedade Riemanniana M, compacta, conexa e sem bordo, é isométrica a uma esfera, desde que a curvatura de Ricci de M satisfaça determinada limitação inferior. Este teorema resolve o problema de encontrar as variedades que atingem a igualdade na estimativa de Lichnerowicz para o primeiro autovalor. Em 1977, R. Reilly, no artigo Applications of the Hessian Operator in a Riemannian Manifold, publicado no Indianna University Mathematical Journal, volume 23, páginas 459 a 452, demonstrou uma generalização do Teorema de Obata para variedades compactas com bordo. Como exemplo da técnica desenvolvida nesta demonstração, ele apresenta uma nova demonstração do Teorema de Alexandrov. Esta demonstração, bem como as técnicas envolvidas, são o objeto de estudo deste trabalho.
|
Page generated in 0.0644 seconds