• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 12
  • 9
  • 5
  • 3
  • 3
  • 1
  • Tagged with
  • 149
  • 149
  • 50
  • 41
  • 41
  • 40
  • 36
  • 32
  • 30
  • 25
  • 23
  • 22
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Topics in navigation and guidance of wheeled robots

Teimoori Sangani, Hamid, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2009 (has links)
Navigation and guidance of mobile robots towards steady or maneuvering objects (targets) is one of the most important areas of robotics that has attracted a lot of attention in recent decades. However, in most of the existing methods, both the line-of-sight angle (bearing) and the relative distance (range) are assumed to be available for navigation and guidance algorithms. There is also a relatively large body of research on navigation and guidance with bearings-only measurements. In contrast, only a few results on navigation and guidance towards an unknown target using range-only measurements have been published. Various problems of navigation, guidance, location estimation and target tracking based on range-only measurements often arise in new wireless networks related applications. Recent advances in these applications allow us to use inexpensive transponders and receivers for range-only measurements which provide information in dynamic and noisy environments without the necessity of line-of-sight. To take advantage of these sensors, algorithms must be developed for range-only navigation. The main part of this thesis is concerned with the problem of real-time navigation and guidance of Wheeled Mobile Robots (WMRs) towards an unknown stationary or moving target using range-only measurements. The range can be estimated using the signal strength and the robust extended Kalman filtering. Several similar algorithms for navigation and guidance termed Equiangular Navigation and Guidance (ENG) laws are proposed and mathematically rigorous proofs of convergence and stability of the proposed guidance laws are given. The experimental investigation into the use of range data for a WMR navigation is documented and the results and discussions on the performance of the proposed guidance strategies are presented, where a wheeled robot successfully approach a stationary or follow a maneuvering target. In order to safely navigate and reliably operate in populated environments, ENG is then modified into Augmented-ENG (AENG), which enables the robot to approach a stationary target or follow an unpredictable maneuvering object in an unknown environment, while keeping a safe distance from the target, and simultaneously preserving a safety margin from the obstacles. Furthermore, we propose and experimentally investigate a new biologically inspired method for local obstacle avoidance and give the mathematically rigorous proof of the idea. In order for the robot to avoid collision and bypass the enroute obstacles in this method, the angle between the instantaneous moving direction of the robot and a reference point on the surface of the obstacle is kept constant. The proposed idea is combined with the ENG law, which leads to a reliable and fast long-range navigation. The performance of both navigation strategy and local obstacle avoidance techniques are confirmed with computer simulations and several experiments with ActivMedia Pioneer 3-DX wheeled robots. The second part of the thesis investigates some challenging problems in the area of wheeled robot navigation. We first address the problem of bearing-only guidance of an autonomous vehicle following a moving target with smaller minimum turning radius compared to that of the follower and propose a simple and constructive navigation law. In compliance with the increasing research on decentralized control laws for groups of mobile autonomous robots, we consider the problems of decentralized navigation of network of WMRs with limited communication and decentralized stabilization of formation of WMRs. New control laws are presented and simulation results are provided to illustrate the control laws and their applications.
22

Techniques and Algorithms for Autonomous Vehicles in Forest Environment

Ringdahl, Ola January 2007 (has links)
This thesis describes an ongoing project of which the purpose is designing and developing techniques and algorithms for autonomous off-road vehicles. The focus is on some of the components necessary to accomplish autonomous navigation, which involves sensing and moving safely along a user-defined path in a dynamic forest environment. The work is part of a long-term vision in the forest industry of developing an unmanned shuttle that transports timber from the felling area to the main roads for further transportation. A new path-tracking algorithm is introduced and demonstrated as superior to standard algorithms, such as Follow the Carrot and Pure Pursuit. This is accomplished by using recorded data from a path-learning phase. By using the recorded steering angle, the curvature of the path is automatically included in the final steering command. Localization is accomplished by a neural network that fuses data from a Real-Time Kinematic Differential GPS/GLONASS, a gyro, and wheel odometry. Test results are presented for path tracking and localization accuracy from runs conducted on a full-sized forest machine. A large part of the work has been design and implementation of a general software platform for research in autonomous vehicles. The developed algorithms and software have been implemented and tested on a full-size forest machine supplied by our industrial partner Komatsu Forest AB. Results from successful field tests with autonomous path tracking, including obstacle avoidance, are presented.
23

Obstacle avoidance and altitude control for autonomous UAV

Carlsén Stenström, Jakob, Rodén, Marcus January 2018 (has links)
Drones or UAVs are quickly becoming a bigger part of today's society. Delivery servicesand transportation are elds were big development is being done. For the UAVs to beable to perform its given tasks safely more and more sensors are implemented.This report covers the development and implementation of a sensor system to helpan UAV to keep a xed altitude and provide proximity measurements of the environ-ment to avoid obstacles. The system is build around the ATmega328P microprocessorand uses I2C to communicate with the sensors. Measurements are ltered and pub-lished into ROS where the autopilot can reach the measurements and make decisionsbased on the readings. Additionally, simple algorithms to avoid obstacles have beenimplemented and simulated in the simulation software Gazebo. The altitude controlsystem which has been the main focus of the project has been implemented with goodresults in both simulation and real ight tests. The system will be used in a competi-tion held in Arizona, USA where the project team together with two other project willcompete in the prestigious CPS-challenge.
24

Effects of the Presence of Obstacles on the Attentional Demand of Blind Navigation in Young and Elderly Subjects

Richer, Natalie January 2012 (has links)
The ability to navigate with limited vision is a skill that is often employed in our daily lives. Navigating without vision to a remembered target has previously been studied. However, not much is known about the attention required to perform blind navigation. We examined the effect of aging and presence of obstacles on the attentional demands of blind navigation. We evaluated reaction time, navigation errors and average walking speed in an 8 meter walking path, with or without obstacles, in the absence of vision. Results showed that older participants had increased reaction time and increased linear distance travelled as opposed to young participants, that obstacles increased reaction time and decreased average walking speed in all participants, and that emitting the reaction time stimulus early in the trial increased the linear distance travelled. Interpretation of the results suggests that aging and presence of obstacles augments the attentional demands of blind navigation.
25

Mobile Robot Obstacle Avoidance based on Deep Reinforcement Learning

Feng, Shumin January 2018 (has links)
Obstacle avoidance is one of the core problems in the field of autonomous navigation. An obstacle avoidance approach is developed for the navigation task of a reconfigurable multi-robot system named STORM, which stands for Self-configurable and Transformable Omni-Directional Robotic Modules. Various mathematical models have been developed in previous work in this field to avoid collision for such robots. In this work, the proposed collision avoidance algorithm is trained via Deep Reinforcement Learning, which enables the robot to learn by itself from its experiences, and then fit a mathematical model by updating the parameters of a neural network. The trained neural network architecture is capable of choosing an action directly based on the input sensor data using the trained neural network architecture. A virtual STORM locomotion module was trained to explore a Gazebo simulation environment without collision, using the proposed collision avoidance strategies based on DRL. The mathematical model of the avoidance algorithm was derived from the simulation and then applied to the prototype of the locomotion module and validated via experiments. Universal software architecture was also designed for the STORM modules. The software architecture has extensible and reusable features that improve the design efficiency and enable parallel development. / Master of Science / In this thesis, an obstacle avoidance approach is described to enable autonomous navigation of a reconfigurable multi-robot system, STORM. The Self-configurable and Transformable Omni-Directional Robotic Modules (STORM) is a novel approach towards heterogeneous swarm robotics. The system has two types of robotic modules, namely the locomotion module and the manipulation module. Each module is able to navigate and perform tasks independently. In addition, the systems are designed to autonomously dock together to perform tasks that the modules individually are unable to accomplish. The proposed obstacle avoidance approach is designed for the modules of STORM, but can be applied to mobile robots in general. In contrast to the existing collision avoidance approaches, the proposed algorithm was trained via deep reinforcement learning (DRL). This enables the robot to learn by itself from its experiences, and then fit a mathematical model by updating the parameters of a neural network. In order to avoid damage to the real robot during the learning phase, a virtual robot was trained inside a Gazebo simulation environment with obstacles. The mathematical model for the collision avoidance strategy obtained through DRL was then validated on a locomotion module prototype of STORM. This thesis also introduces the overall STORM architecture and provides a brief overview of the generalized software architecture designed for the STORM modules. The software architecture has expandable and reusable features that apply well to the swarm architecture while allowing for design efficiency and parallel development.
26

Assistive Navigation Technology for Visually Impaired Individuals

Norouzi Kandalan, Roya 08 1900 (has links)
Sight is essential in our daily tasks. Compensatory senses have been used for centuries by visually impaired individuals to navigate independently. The help of technology can minimize some challenges for visually impaired individuals. Assistive navigation technologies facilitate the pathfinding and tracing in indoor scenarios. Different modules are added to assistive navigation technologies to warn about the obstacles not only on the ground but about hanging objects. In this work, we attempt to explore new methods to assist visually impaired individuals in navigating independently in an indoor scenario. We employed a location estimation algorithm based on the fingerprinting method to estimate the initial location of the user. We mitigate the error of estimation with particle filter. The shortest path has been calculated with an A* algorithm. To provide the user with an accident-free experiment, we employed an obstacle avoidance algorithm capable of warning the users about the potential hazards. Finally, to provide an effective means of communication with the user, we employed text-to-speech and speech recognition algorithms. The main contribution of this work is to glue these modules together efficiently and affordably.
27

COMPARISON OF THREE OBSTACLE AVOIDANCE METHODS FOR AN AUTONOMOUS GUIDED VEHICLE

MODI, SACHIN BRISMOHAN 16 September 2002 (has links)
No description available.
28

Hexapod Gait Planning and Obstacle Avoidance Algorithm

Guo, Yixuan January 2016 (has links)
No description available.
29

Obstacle crossing during locomotion: Visual exproprioceptive information is used in an online mode to update foot placement before the obstacle but not swing trajectory over it

Timmis, Matthew A., Buckley, John 13 February 2012 (has links)
Yes / Although gaze during adaptive gait involving obstacle crossing is typically directed two or more steps ahead, visual information of the swinging lower-limb and its relative position in the environment (termed visual exproprioception) is available in the lower visual field (lvf). This study determined exactly when lvf exproprioceptive information is utilised to control/update lead-limb swing trajectory during obstacle negotiation. 12 young participants negotiated an obstacle wearing smart-glass goggles which unpredictably occluded the lvf for certain periods during obstacle approach and crossing. Trials were also completed with lvf occluded for the entirety of the trial. When lvf was occluded throughout, footplacement distance and toe-clearance became significantly increased; which is consistent with previous work that likewise used continuous lvf occlusion. Both variables were similarly affected by lvf occlusion from instant of penultimate-step contact, but both were unaffected when lvf was occluded from instant of final-step contact. These findings suggest that lvf (exproprioceptive) input is typically used in an online manner to control/update final foot-placement, and that without such control, uncertainty regarding foot placement causes toe-clearance to be increased. Also that lvf input is not normally exploited in an online manner to update toe-clearance during crossing: which is contrary to what previous research has suggested.
30

Experiments in Real-time Path Planning for Riverine Environments

Reed, Caleb M. 13 May 2008 (has links)
This work focuses on the development and implementation of an autonomous path planning and obstacle avoidance algorithm for an autonomous surface vehicle (ASV) in a riverine environment. The algorithm effectively handles trap situations, which occur when the river bends away from the destination. In addition, the algorithm uses real-time sensor feedback to avoid obstacles. A general global route is proposed based on an a priori shoreline map. Then, local paths are calculated considering both the a priori data and measurements received from an obstacle sensor. These paths roughly follow the global path. The algorithm was tested on an ASV equipped with basic navigational sensors and an omnidirectional camera for obstacle detection, and experimentation verified its effectiveness. / Master of Science

Page generated in 0.0434 seconds