• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Índice geométrico na determinação da perda de carga localizada em conexão de emissores sobre tubos de polietileno de pequenos diâmetros / Geometrical Index in the determination of head losses located in connection of emitters on polyethylene pipes of small diameters

Cardoso, Gabriel Greco de Guimarães 01 August 2007 (has links)
O procedimento de dimensionamento de uma linha lateral de microirrigação necessita avaliar com precisão as perdas de carga distribuídas na tubulação e as perdas de carga localizadas nas inserções dos emissores com os tubos. Estas perdas localizadas podem ser significativas quando comparadas com as perdas de carga totais, devido ao grande número de emissores instalados ao longo da linha lateral. Este trabalho reporta os resultados de um experimento sobre perda de carga distribuída, fator de atrito e perda de carga localizada em conexões de emissores &#34;on-line&#34; em tubos de polietileno de pequeno diâmetro. Foram utilizados cinco tubos com diâmetros internos de 10,0 mm, 13,0 mm, 16,3 mm, 17,4 mm e 19,7 mm. O experimento foi conduzido para números de Reynolds no intervalo de 5000 a 68000, obtidos pela variação da vazão nos tubos, a uma temperatura média da água de 20 &#177; 2 &#176;C. Os resultados foram analisados e concluiu-se que o fator de atrito f da equação de Darcy-Weisbach pode ser estimado com c = 0,300 e m = 0,25. A equação de Blasius com c = 0,316 e m = 0,25 mostrou-se conservadora na estimativa do fator de atrito, porém esse fato não constitui limitação para sua utilização em projetos de microirrigação. As análises mostraram que as duas equações proporcionam estimativas de f com pequeno desvio médio (5,1%). Para um dado conjunto tubo-conexão o coeficiente de carga cinética (KL) foi praticamente independente do número de Reynolds, para R>20000, sugerindo que cada conjunto tubo-conexão pode ser caracterizado por um valor médio de KL. Para desenvolver um procedimento de estimativa de KL, a geometria da conexão entre o emissor e o tubo foi caracterizada por um índice de obstrução IO, que depende da razão (r) entre a área da seção transversal do tubo, onde o conector está localizado, e a área da seção transversal do tubo fora do conector. Uma função potência foi ajustada aos pares experimentais (IO, KL). A seleção do modelo é consistente com o fenômeno físico uma vez que KL = 0 para r = 1 (nenhuma obstrução dentro do tubo). Para 5000<R68000 a relação foi KL = 1,23 (IO)0,51 com R2 = 0,9556 e erro padrão do ajuste igual a 0,04245. As diferenças entre os valores de KL estimados e observados são normalmente distribuídas. / Microirrigation lateral design procedure needs to accuratel evaluation of both the pipe head losses and the local losses that are due to the protrusion of emitter barbs into the flow. These local losses, in fact (in relation to the high number of emitters located along the line) can become significant compared to the overall energy loss. On this paper, the results of an experimental study on the pipe head losses, friction factor and head local losses for small-diameters polyethylene pipes are reported. The experiment was carried out using a range of Reynolds number between 5000 to 68000, obtained by varying discharge at 20 &#177; 2 &#176;C water temperature, with a internal diameter pipes of 10,0 mm, 13,0 mm, 16,3 mm, 17,4 mm and 19,7 mm. According to the results analysis and experimental conditions the friction factor (f) of the Darcy-Weisbach equation can be estimated with c = 0,300 and m = 0,25. The Blasius equation (c = 0,316 and m = 0,25) gives a conservative estimative of f, although this fact is non restrictive for microirrigationsystem design. The analysis shows that both the Blasius and the adjusted equation parameters allow accurate friction factor estimate, characterized by low mean error (5,1%). For a given pipeconnection system, the fraction KL of kinetic head was practically independent of the Reynolds number, for R>20000, which suggested that each system can be characterized by the mean value of KL. To derive an estimating procedure of KL, the geometry of the connection between the emitter and the pipe was characterized by the obstruction index IO, which is dependent on the ratio (r) between the pipe cross-section area corresponding to the section in which the emitter is located, and the pipe cross-section area. A power relationship was then fitted to the experimental IO, KL data pairs. The selection form of thr relationship is consistent with the physical phenomenon since it estimates KL = 0 for r = 1 (no obstruction into the pipe). For 5000<R<68000 the relationship was KL = 1,23 (IO)0,51 with R2 = 0,9556 and standard fit error equal to 0,04245. The differences between KL observed values and the calculated ones are normally distributed.
2

Perda localizada de carga em gotejadores integrados em tubos de polietileno / Local head losses for integrated drippers in polyethylene pipes

Gomes, Anthony Wellington Almeida 30 March 2009 (has links)
A inserção de gotejadores em uma tubulação modifica as linhas de fluxo, provocando turbulência local, que resulta em perdas de carga adicionais maiores que as perdas contínuas na tubulação. Para avaliar a perda total de carga, ao longo da linha lateral de gotejadores, as perdas contínuas e as localizadas, devidas à presença dos emissores no tubo, devem ser consideradas. Este trabalho apresenta os resultados de um experimento conduzido para avaliar as perdas localizadas de carga em gotejadores coaxiais integrados em tubos de polietileno. A perda de carga para diferentes vazões foi determinada em quatro modelos de tubos gotejadores, com sete repetições. Cada segmento de tubo utilizado continha 11 gotejadores. Para cada vazão, a perda localizada de carga foi calculada pela diferença entre a perda de carga no tubo com emissor e a perda de carga continua no tubo uniforme, estimada pela equação de Darcy-Weisbach. Aproximações matemáticas foram sugeridas para calcular a perda de carga com base no coeficiente de carga cinética (K) e em um valor constante de comprimento equivalente (Le). Para cada modelo de tubo gotejador, o coeficiente K foi praticamente independente do número de Reynolds, para R > 10 000, sugerindo que cada gotejador pode ser caracterizado por um valor médio de K, obtido em função de um índice de obstrução. Em decorrência, propôs-se uma alternativa para calcular a perda localizada de carga, provocada por gotejadores coaxiais integrados a tubos de polietileno, em função de relações geométricas entre a área de escoamento através do gotejador e a da seção do tubo. Os resultados encontrados possibilitam concluir que: (a) maior variabilidade dos valores de K ocorreu para os gotejadores não-autocompensados e a maior perda localizada de carga para os autocompesados; (b) o aumento do grau de obstrução (1 - Ag/At) proporcionou o aumento na perda localizada de carga. Considerando a vazão de 20 x 10-5 m3 s-1, nos tubos gotejadores Amanco, observou-se que o aumento de 1,79 vez no grau de obstrução resultou no aumento de 3 vezes na perda localizada de carga; já nos gotejadores Naandan, o aumento de 2,2 vezes no grau de obstrução proporcionou o aumento de 8,9 vezes na perda de carga; (c) a consideração da perda localizada de carga é um critério relevante no dimensionamento de linhas laterais de gotejamento, especialmente quando se utilizam gotejadores autocompensados. A desconsideração da perda localizada de carga levou à superestimativa do comprimento máximo da linha lateral de até 25,7%, para os gotejadores autocompensados, e de 9,5%, para os não-autocompensados; (d) o cálculo da perda localizada de carga, utilizando o modelo potencial para estimar o valor de K em função do índice de obstrução, mostrou bons resultados, comparáveis àqueles obtidos com o valor de K ajustado pelos dados observados em laboratório, o que resultou em pequenas variações na estimativa do comprimento máximo da linha lateral por esses dois procedimentos. Considera-se, assim, que a perda localizada de carga em gotejadores coaxiais, pode ser calculada utilizando-se um coeficiente de carga cinética calculada em função do índice de obstrução. / The insert of the drip in a pipe modifies the flow line, causing local turbulance, which results in more additional head loss than the continued loss in pipes. In order to evaluate the local head loss, along the drip irrigation laterals, the continued and localized loss due the presence of these emitters inside the pipes must be considered. This work shows the results of an experiment carried out to evaluate the local head loss in coaxial drippers integrated to polyethylene pipes. The head loss for different discharges was determined using four drip pipe models, using seven repetitions. Each pipe segment contained 11 drips. For each discharge, the local head loss was calculated by the difference between head loss in the pipe with emitters and the continued head loss in the uniform pipe, estimated by Darcy-Weisbach equation. Mathematical approaches were proposed to calculate the head loss based on the kinetic head coefficient (k) and in a equivalent length of pipe constant value (le). For each drip pipe model, the k coefficient was considered independent from Reynolds number, R >10.000. It can be concluded that each drip can be characterized by an average k, obtained in function from a obstruction index. As a result, it was proposed an alternative to calculate the local head loss caused by coaxial drip integrated to polyethylene pipes, according to geometric relationship between the flow area through the drip and the pipe section. According to the results can be concluded that: (a) the not self-compensated pressure emitters showed more variability in k values and the self-compensated showed greater local head loss; (b) the obstruction index increase (1 ag/at) caused an increase in the total head loss. Considering a discharge 20 x 10 -5 m3 s-1, it was observed in Amanco drip that a 1,79 times increase in obstruction index, resulting in 3 times the head loss and in Naandan drip, it was observed that 2,2 times increase in obstruction index, resulting in 8,9 times the head loss; (c) the head loss is a relevant criterion in the drip laterals design, especially for self-compensated drips. The disregard of the local head loss resulted in a over-estimate of 25,7% in the maximum length lateral, for self-compensated drips, and until 9,5% for not self-compensated drips; (d) the calculation of the local head loss using the potential model to estimate k value, according to the obstruction index, showed good results when comparing to those obtained using k factor adjusted to the observed data in the laboratory. Resulting in few variations in the maximum length lateral estimation for both procedures. It is considered that the local head loss, caused by the integrated drip on drip lateral, can be calculated using kinetic head coefficient according to obstruction index.
3

Perda localizada de carga em gotejadores integrados em tubos de polietileno / Local head losses for integrated drippers in polyethylene pipes

Anthony Wellington Almeida Gomes 30 March 2009 (has links)
A inserção de gotejadores em uma tubulação modifica as linhas de fluxo, provocando turbulência local, que resulta em perdas de carga adicionais maiores que as perdas contínuas na tubulação. Para avaliar a perda total de carga, ao longo da linha lateral de gotejadores, as perdas contínuas e as localizadas, devidas à presença dos emissores no tubo, devem ser consideradas. Este trabalho apresenta os resultados de um experimento conduzido para avaliar as perdas localizadas de carga em gotejadores coaxiais integrados em tubos de polietileno. A perda de carga para diferentes vazões foi determinada em quatro modelos de tubos gotejadores, com sete repetições. Cada segmento de tubo utilizado continha 11 gotejadores. Para cada vazão, a perda localizada de carga foi calculada pela diferença entre a perda de carga no tubo com emissor e a perda de carga continua no tubo uniforme, estimada pela equação de Darcy-Weisbach. Aproximações matemáticas foram sugeridas para calcular a perda de carga com base no coeficiente de carga cinética (K) e em um valor constante de comprimento equivalente (Le). Para cada modelo de tubo gotejador, o coeficiente K foi praticamente independente do número de Reynolds, para R > 10 000, sugerindo que cada gotejador pode ser caracterizado por um valor médio de K, obtido em função de um índice de obstrução. Em decorrência, propôs-se uma alternativa para calcular a perda localizada de carga, provocada por gotejadores coaxiais integrados a tubos de polietileno, em função de relações geométricas entre a área de escoamento através do gotejador e a da seção do tubo. Os resultados encontrados possibilitam concluir que: (a) maior variabilidade dos valores de K ocorreu para os gotejadores não-autocompensados e a maior perda localizada de carga para os autocompesados; (b) o aumento do grau de obstrução (1 - Ag/At) proporcionou o aumento na perda localizada de carga. Considerando a vazão de 20 x 10-5 m3 s-1, nos tubos gotejadores Amanco, observou-se que o aumento de 1,79 vez no grau de obstrução resultou no aumento de 3 vezes na perda localizada de carga; já nos gotejadores Naandan, o aumento de 2,2 vezes no grau de obstrução proporcionou o aumento de 8,9 vezes na perda de carga; (c) a consideração da perda localizada de carga é um critério relevante no dimensionamento de linhas laterais de gotejamento, especialmente quando se utilizam gotejadores autocompensados. A desconsideração da perda localizada de carga levou à superestimativa do comprimento máximo da linha lateral de até 25,7%, para os gotejadores autocompensados, e de 9,5%, para os não-autocompensados; (d) o cálculo da perda localizada de carga, utilizando o modelo potencial para estimar o valor de K em função do índice de obstrução, mostrou bons resultados, comparáveis àqueles obtidos com o valor de K ajustado pelos dados observados em laboratório, o que resultou em pequenas variações na estimativa do comprimento máximo da linha lateral por esses dois procedimentos. Considera-se, assim, que a perda localizada de carga em gotejadores coaxiais, pode ser calculada utilizando-se um coeficiente de carga cinética calculada em função do índice de obstrução. / The insert of the drip in a pipe modifies the flow line, causing local turbulance, which results in more additional head loss than the continued loss in pipes. In order to evaluate the local head loss, along the drip irrigation laterals, the continued and localized loss due the presence of these emitters inside the pipes must be considered. This work shows the results of an experiment carried out to evaluate the local head loss in coaxial drippers integrated to polyethylene pipes. The head loss for different discharges was determined using four drip pipe models, using seven repetitions. Each pipe segment contained 11 drips. For each discharge, the local head loss was calculated by the difference between head loss in the pipe with emitters and the continued head loss in the uniform pipe, estimated by Darcy-Weisbach equation. Mathematical approaches were proposed to calculate the head loss based on the kinetic head coefficient (k) and in a equivalent length of pipe constant value (le). For each drip pipe model, the k coefficient was considered independent from Reynolds number, R >10.000. It can be concluded that each drip can be characterized by an average k, obtained in function from a obstruction index. As a result, it was proposed an alternative to calculate the local head loss caused by coaxial drip integrated to polyethylene pipes, according to geometric relationship between the flow area through the drip and the pipe section. According to the results can be concluded that: (a) the not self-compensated pressure emitters showed more variability in k values and the self-compensated showed greater local head loss; (b) the obstruction index increase (1 ag/at) caused an increase in the total head loss. Considering a discharge 20 x 10 -5 m3 s-1, it was observed in Amanco drip that a 1,79 times increase in obstruction index, resulting in 3 times the head loss and in Naandan drip, it was observed that 2,2 times increase in obstruction index, resulting in 8,9 times the head loss; (c) the head loss is a relevant criterion in the drip laterals design, especially for self-compensated drips. The disregard of the local head loss resulted in a over-estimate of 25,7% in the maximum length lateral, for self-compensated drips, and until 9,5% for not self-compensated drips; (d) the calculation of the local head loss using the potential model to estimate k value, according to the obstruction index, showed good results when comparing to those obtained using k factor adjusted to the observed data in the laboratory. Resulting in few variations in the maximum length lateral estimation for both procedures. It is considered that the local head loss, caused by the integrated drip on drip lateral, can be calculated using kinetic head coefficient according to obstruction index.
4

Índice geométrico na determinação da perda de carga localizada em conexão de emissores sobre tubos de polietileno de pequenos diâmetros / Geometrical Index in the determination of head losses located in connection of emitters on polyethylene pipes of small diameters

Gabriel Greco de Guimarães Cardoso 01 August 2007 (has links)
O procedimento de dimensionamento de uma linha lateral de microirrigação necessita avaliar com precisão as perdas de carga distribuídas na tubulação e as perdas de carga localizadas nas inserções dos emissores com os tubos. Estas perdas localizadas podem ser significativas quando comparadas com as perdas de carga totais, devido ao grande número de emissores instalados ao longo da linha lateral. Este trabalho reporta os resultados de um experimento sobre perda de carga distribuída, fator de atrito e perda de carga localizada em conexões de emissores &#34;on-line&#34; em tubos de polietileno de pequeno diâmetro. Foram utilizados cinco tubos com diâmetros internos de 10,0 mm, 13,0 mm, 16,3 mm, 17,4 mm e 19,7 mm. O experimento foi conduzido para números de Reynolds no intervalo de 5000 a 68000, obtidos pela variação da vazão nos tubos, a uma temperatura média da água de 20 &#177; 2 &#176;C. Os resultados foram analisados e concluiu-se que o fator de atrito f da equação de Darcy-Weisbach pode ser estimado com c = 0,300 e m = 0,25. A equação de Blasius com c = 0,316 e m = 0,25 mostrou-se conservadora na estimativa do fator de atrito, porém esse fato não constitui limitação para sua utilização em projetos de microirrigação. As análises mostraram que as duas equações proporcionam estimativas de f com pequeno desvio médio (5,1%). Para um dado conjunto tubo-conexão o coeficiente de carga cinética (KL) foi praticamente independente do número de Reynolds, para R>20000, sugerindo que cada conjunto tubo-conexão pode ser caracterizado por um valor médio de KL. Para desenvolver um procedimento de estimativa de KL, a geometria da conexão entre o emissor e o tubo foi caracterizada por um índice de obstrução IO, que depende da razão (r) entre a área da seção transversal do tubo, onde o conector está localizado, e a área da seção transversal do tubo fora do conector. Uma função potência foi ajustada aos pares experimentais (IO, KL). A seleção do modelo é consistente com o fenômeno físico uma vez que KL = 0 para r = 1 (nenhuma obstrução dentro do tubo). Para 5000<R68000 a relação foi KL = 1,23 (IO)0,51 com R2 = 0,9556 e erro padrão do ajuste igual a 0,04245. As diferenças entre os valores de KL estimados e observados são normalmente distribuídas. / Microirrigation lateral design procedure needs to accuratel evaluation of both the pipe head losses and the local losses that are due to the protrusion of emitter barbs into the flow. These local losses, in fact (in relation to the high number of emitters located along the line) can become significant compared to the overall energy loss. On this paper, the results of an experimental study on the pipe head losses, friction factor and head local losses for small-diameters polyethylene pipes are reported. The experiment was carried out using a range of Reynolds number between 5000 to 68000, obtained by varying discharge at 20 &#177; 2 &#176;C water temperature, with a internal diameter pipes of 10,0 mm, 13,0 mm, 16,3 mm, 17,4 mm and 19,7 mm. According to the results analysis and experimental conditions the friction factor (f) of the Darcy-Weisbach equation can be estimated with c = 0,300 and m = 0,25. The Blasius equation (c = 0,316 and m = 0,25) gives a conservative estimative of f, although this fact is non restrictive for microirrigationsystem design. The analysis shows that both the Blasius and the adjusted equation parameters allow accurate friction factor estimate, characterized by low mean error (5,1%). For a given pipeconnection system, the fraction KL of kinetic head was practically independent of the Reynolds number, for R>20000, which suggested that each system can be characterized by the mean value of KL. To derive an estimating procedure of KL, the geometry of the connection between the emitter and the pipe was characterized by the obstruction index IO, which is dependent on the ratio (r) between the pipe cross-section area corresponding to the section in which the emitter is located, and the pipe cross-section area. A power relationship was then fitted to the experimental IO, KL data pairs. The selection form of thr relationship is consistent with the physical phenomenon since it estimates KL = 0 for r = 1 (no obstruction into the pipe). For 5000<R<68000 the relationship was KL = 1,23 (IO)0,51 with R2 = 0,9556 and standard fit error equal to 0,04245. The differences between KL observed values and the calculated ones are normally distributed.
5

Modelagem matemática da perda de carga em emissores integrados a tubulação de irrigação localizada / Mathematical modeling of the head loss in integrated emitters pipe localized irrigation

Flores, José Henrique Nunes, Flores, José Henrique Nunes 20 February 2017 (has links)
Submitted by Aline Batista (alinehb.ufpel@gmail.com) on 2017-08-16T14:21:20Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) José_Henrique_Nunes_Flores_Modelagem_matemática_da_perda_de_carga_em_emissores_integrados_a_tubulação_de_irrigação_localizada.pdf: 4719317 bytes, checksum: b86c8f8b440b56d663a03abb04efaf4f (MD5) / Made available in DSpace on 2017-08-16T14:21:20Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) José_Henrique_Nunes_Flores_Modelagem_matemática_da_perda_de_carga_em_emissores_integrados_a_tubulação_de_irrigação_localizada.pdf: 4719317 bytes, checksum: b86c8f8b440b56d663a03abb04efaf4f (MD5) Previous issue date: 2017-02-20 / Sem bolsa / Os objetivos deste trabalho foram: (i) Determinar a perda de carga em função da geometria dos emissores, bem como desenvolver uma relação entre a perda de carga localizada, causada pela inserção do emissor, e as características geométricas da tubulação, mediante a utilização do índice de obstrução, para tubogotejadores com emissores integrados do tipo pastilha; e (ii) Gerar um modelo semiteórico, para estimativa da perda de carga localizada no emissor, causada por sua inserção dentro da tubulação, para tubos emissores integrados do tipo pastilha. Para isso, utilizou-se uma bancada experimental desenvolvida para controle do sistema, e obtenção das variáveis pertinentes ao estudo (vazão, temperatura e perda de carga total no tubo emissor). Obteve-se então, através da utilização da equação da continuidade, a velocidade de escoamento. A partir da diferença da perda de carga total no tubo emissor do valor obtido com o cálculo da perda de carga continua na tubulação, obteve-se a perda de carga localizada causada pela inserção do emissor. Através de um projetor ótico de perfil, foram determinadas as características geométricas dos tubos emissores (áreas de seção transversal e perímetros molhados). Obteve-se, a partir da perda de carga localizada no emissor e da carga cinética, o coeficiente k, e gerou-se um modelo para sua estimativa baseado no índice de obstrução. Desenvolveu-se um modelo semiteórico para estimativa da perda de carga no emissor, a partir do Teorema de Bélanger, levando em consideração as características geométricas da tubulação. Os emissores escolhidos para este estudo são: (a) AZUD Premier Line PC; (b) Naan Dan Jain Amnon Drip AC; e (c) Rain Bird XF-SDI. Os resultados permitiram inferir que a perda de carga total no tubo emissor e a perda de carga localizada no emissor apresentaram relação potencial com a vazão. As razões de obstrução dos emissores foram 0,62, 0,68, e 0,65, e os índices de obstrução 0,37, 0,22, e 0,28, para os emissores AZUD Premier Line PC, Naan Dan Jain Amnon Drip AC, e Rain Bird XF-SDI, respectivamente. Já os coeficientes k foram, respectivamente, 1,03, 1,07, e 0,86, para os emissores AZUD Premier Line PC, Naan Dan Jain Amnon Drip AC e Rain Bird XF-SDI. O modelo potencial correlacionando o coeficiente k com o índice de obstrução, foi k=1,66 IO0,413. Em relação ao modelo semiteórico proposto, houve superestimava em 9% e 2%, para os emissores AZUD Premier Line PC e Rain Bird XF-SDI, respectivamente, e subestimativa em 34% para o emissor Naan Dan Jain Amnon Drip AC, apresentando ajuste considerado muito bom, através do índice c, para os três emissores estudados. Conclui-se que cada emissor apresentou um valor para o coeficiente k, existindo correlação com a geometria do tubo emissor, e que o modelo semiteórico proposto, pode ser utilizado para emissores de geometria semelhantes ao AZUD Premier Line PC e Rain Bird XFSDI. / The objectives of this work was: (i) To determine the variability of the head loss as a function of the geometry of the emitters, as well as to develop a relation between the local head loss caused by the emitter insertion and the geometric characteristics of the emitting pipe, using the obstruction index, for emitting pipes with non-coaxial emitters; and (ii) Generate a semi-analytical model to estimate the local head loos in the emitter, caused by its insertion into the pipeline, for emitting pipes with non-coaxial emitters. For this, an experimental bench was developed to control the system and obtain the variables pertinent to the study (flow, temperature and total head loss in the emitter pipe). Then, through the use of the continuity equation, the flow velocity was obtained. From the difference of the total head loss in the emitter pipe and the value obtained with the calculation of the continuous head loss in the pipeline, the local head loss caused by the insertion of the emitter was obtained. The geometric characteristics of the emitting tubes (cross-sectional areas and wetted perimeters) were determined through an optical profile projector. The k coefficient was obtained from the local head loss in the emitter and kinetic energy, and a model was generated for its estimation based on the obstruction index. A semi-analytical model was developed to estimate the head loss in the emitter from the Bélanger Theorem, taking into account the geometric characteristics of the pipe. The emitters chosen for this study are: (a) AZUD Premier Line PC; (b) Naan Dan Jain Amnon Drip AC; And (c) Rain Bird XF-SDI. The results allowed to infer that the total head loss in the emitter pipe and the local head loss in the emitter presented a potential relation with the flow rate. Emitter obstruction ratio were 0.62, 0.68, and 0.65, and obstruction index was 0.37, 0.22, and 0.28 for the emitters AZUD Premier Line PC, Naan Dan Jain Amnon Drip AC, and Rain Bird XFSDI, respectively. The k coefficients were 1.03, 1.07 and 0.86, respectively, for the AZUD Premier Line PC, Naan Dan Jain Amnon Drip AC and Rain Bird XF-SDI emitters respectively. The potential model correlating the k coefficient with the obstruction index was k=1,66 OI0,413. In relation to the proposed semi-analytical model, there was a 9% and 2% overestimation of the AZUD Premier Line PC and Rain Bird XF-SDI emitters, respectively, and a 34% underestimation by Naan Dan Jain Amnon Drip AC, but presenting an adjustment considered very good, through the index c, for the three emitters studied. It is concluded that each emitter presented a value for the k coefficient, there being a correlation with the geometry of the emitter tube, and that the proposed semi-analytical model can be used for geometric emitters similar to AZUD Premier Line PC and Rain Bird XF-SDI.

Page generated in 0.0809 seconds