• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Temporal Mining Approaches for Smart Buildings Research

Shao, Huijuan 30 January 2017 (has links)
With the advent of modern sensor technologies, significant opportunities have opened up to help conserve energy in residential and commercial buildings. Moreover, the rapid urbanization we are witnessing requires optimized energy distribution. This dissertation focuses on two sub-problems in improving energy conservation; energy disaggregation and occupancy prediction. Energy disaggregation attempts to separate the energy usage of each circuit or each electric device in a building using only aggregate electricity usage information from the meter for the whole house. The second problem of occupancy prediction can be accomplished using non-invasive indoor activity tracking to predict the locations of people inside a building. We cast both problems as temporal mining problems. We exploit motif mining with constraints to distinguish devices with multiple states, which helps tackle the energy disaggregation problem. Our results reveal that motif mining is adept at distinguishing devices with multiple power levels and at disentangling the combinatorial operation of devices. For the second problem we propose time-gap constrained episode mining to detect activity patterns followed by the use of a mixture of episode generating HMM (EGH) models to predict home occupancy. Finally, we demonstrate that the mixture EGH model can also help predict the location of a person to address non-invasive indoor activities tracking. / Ph. D. / This dissertation uses data analytics techniques to address energy problems in commercial and residential buildings. One topic is energy disaggregation, which is to discover energy consumption patterns without instrumenting each device inside a building. This research gains insight into the following electricity usages inside a building: what devices use majority of power; how much electricity is consumed by each device; when a device is turned on or off. Since we only analyzing data from a few installed power meters, the installation cost is pretty low. As a result, it is applicable to millions of buildings. This work benefits both electricity companies and electricity customers. Another research topic occupancy prediction is to forecast when a house will be occupied. Since heating, venting, and air conditioner (HVAC) consumes the largest power usage at home, automatic operations of HVAC according to house occupancy are crucial for saving electricity without sacrificing the comfort of people in a building. By analysis, we can accurately predict whether a house will be occupied. The HVAC can be turned on and off based on the occupancy status of the building. By integrating this technique with an automatic HVAC device, any house installed with it can provide a more energy-efficient and comfortable environment. In conclusion, this research contributes to saving energy and protecting environment.
2

Feed-Forward Neural Network (FFNN) Based Optimization Of Air Handling Units: A State-Of-The-Art Data-Driven Demand-Controlled Ventilation Strategy

Momeni, Mehdi 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Heating, ventilation and air conditioning systems (HVAC) are the single largest consumer of energy in commercial and residential sectors. Minimizing its energy consumption without compromising indoor air quality (IAQ) and thermal comfort would result in environmental and financial benefits. Currently, most buildings still utilize constant air volume (CAV) systems with on/off control to meet the thermal loads. Such systems, without any consideration of occupancy, may ventilate a zone excessively and result in energy waste. Previous studies showed that CO2-based demand-controlled ventilation (DCV) methods are the most widely used strategies to determine the optimal level of supply air volume. However, conventional CO2 mass balanced models do not yield an optimal estimation accuracy. In this study, feed-forward neural network algorithm (FFNN) was proposed to estimate the zone occupancy using CO2 concentrations, observed occupancy data and the zone schedule. The occupancy prediction result was then utilized to optimize supply fan operation of the air handling unit (AHU) associated with the zone. IAQ and thermal comfort standards were also taken into consideration as the active constraints of this optimization. As for the validation, the experiment was carried out in an auditorium located on a university campus. The results revealed that utilizing neural network occupancy estimation model can reduce the daily ventilation energy by 74.2% when compared to the current on/off control.
3

Using Incumbent Channel Occupancy Prediction to Minimize Secondary License Grant Revocations

Ramanujachari, Divya 13 December 2018 (has links)
With commercial deployment of the Citizens Band Radio Service commencing in the last quarter of 2018, efforts are in progress to improve the efficiency of the Spectrum Access System (SAS) functions. An area of concern as identified in recent field trials is the timebound evacuation of unlicensed secondary users from a frequency band by the SAS on the arrival of an incumbent user. In this thesis, we propose a way to optimize the evacuation process by reducing the number of secondary spectrum grant revocations to be performed. The proposed work leverages knowledge of incumbent user spectrum occupancy pattern obtained from historical spectrum usage data. Using an example model trained on 48 hours of an incumbent user transmission information, we demonstrate prediction of future incumbent user spectrum occupancy for the next 15 hours with 94.4% accuracy. The SAS uses this information to set the time validity of the secondary spectrum grants appropriately. In comparison to a case where spectrum grants are issued with no prior knowledge, the number of revocations declines by 87.5% with a 7.6% reduction in channel utilization. Further, the proposed technique provides a way for the SAS to plan ahead and prepare a backup channel to which secondary users can be redirected which can reduce the evacuation time significantly. / Master of Science / Studies on spectrum occupancy show that, in certain bands, licensed incumbent users use the spectrum only for some time or only within certain geographical limits. The dynamic spectrum access paradigm proposes to reclaim the underutilized spectrum by allowing unlicensed secondary users to access the spectrum opportunistically in the absence of the licensed users. In the United States, the Federal Communications Commission (FCC) has identified 150 MHz of spectrum space from 3550-3700 MHz to implement a dynamic spectrum sharing service called the Citizens Broadband Radio Service (CBRS). The guiding principle of this service is to maximize secondary user channel utilization while ensuring minimal incumbent user disruption. In this study, we propose that these conflicting requirements can be best balanced in the Spectrum Access System (SAS) by programming it to set the time validity of the secondary license grants by taking into consideration the incumbent spectrum occupancy pattern. In order to enable the SAS to learn incumbent spectrum occupancy in a privacy-preserving manner, we propose the use of a deep learning model, specifically the long-short term memory (LSTM). This model can be trained by federal agencies on historical incumbent spectrum occupancy information and then shared with the SAS in a secure manner to obtain prediction information about possible incumbent activity. Then, using the incumbent spectrum occupancy information from the LSTM model, the SAS could issue license grants that would expire before expected arrival time of incumbent user, thus minimizing the number of revocations on incumbent arrival. The scheme was validated using simulations that demonstrated the effectiveness of this approach in minimizing revocation complexity.
4

Spectrum sensing and occupancy prediction for cognitive machine-to-machine wireless networks

Chatziantoniou, Eleftherios January 2014 (has links)
The rapid growth of the Internet of Things (IoT) introduces an additional challenge to the existing spectrum under-utilisation problem as large scale deployments of thousands devices are expected to require wireless connectivity. Dynamic Spectrum Access (DSA) has been proposed as a means of improving the spectrum utilisation of wireless systems. Based on the Cognitive Radio (CR) paradigm, DSA enables unlicensed spectrum users to sense their spectral environment and adapt their operational parameters to opportunistically access any temporally unoccupied bands without causing interference to the primary spectrum users. In the same context, CR inspired Machine-to-Machine (M2M) communications have recently been proposed as a potential solution to the spectrum utilisation problem, which has been driven by the ever increasing number of interconnected devices. M2M communications introduce new challenges for CR in terms of operational environments and design requirements. With spectrum sensing being the key function for CR, this thesis investigates the performance of spectrum sensing and proposes novel sensing approaches and models to address the sensing problem for cognitive M2M deployments. In this thesis, the behaviour of Energy Detection (ED) spectrum sensing for cognitive M2M nodes is modelled using the two-wave with dffi use power fading model. This channel model can describe a variety of realistic fading conditions including worse than Rayleigh scenarios that are expected to occur within the operational environments of cognitive M2M communication systems. The results suggest that ED based spectrum sensing fails to meet the sensing requirements over worse than Rayleigh conditions and consequently requires the signal-to-noise ratio (SNR) to be increased by up to 137%. However, by employing appropriate diversity and node cooperation techniques, the sensing performance can be improved by up to 11.5dB in terms of the required SNR. These results are particularly useful in analysing the eff ects of severe fading in cognitive M2M systems and thus they can be used to design effi cient CR transceivers and to quantify the trade-o s between detection performance and energy e fficiency. A novel predictive spectrum sensing scheme that exploits historical data of past sensing events to predict channel occupancy is proposed and analysed. This approach allows CR terminals to sense only the channels that are predicted to be unoccupied rather than the whole band of interest. Based on this approach, a spectrum occupancy predictor is developed and experimentally validated. The proposed scheme achieves a prediction accuracy of up to 93% which in turn can lead to up to 84% reduction of the spectrum sensing cost. Furthermore, a novel probabilistic model for describing the channel availability in both the vertical and horizontal polarisations is developed. The proposed model is validated based on a measurement campaign for operational scenarios where CR terminals may change their polarisation during their operation. A Gaussian approximation is used to model the empirical channel availability data with more than 95% confi dence bounds. The proposed model can be used as a means of improving spectrum sensing performance by using statistical knowledge on the primary users occupancy pattern.

Page generated in 0.0711 seconds