• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 288
  • 1
  • Tagged with
  • 289
  • 289
  • 285
  • 283
  • 282
  • 282
  • 281
  • 281
  • 281
  • 281
  • 203
  • 107
  • 107
  • 107
  • 107
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Experimental studies of melting and crystallization processes in planetary interiors

Krawczynski, Michael James January 2011 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 191-202). / Melting and crystallization processes on the Earth and Moon are explored in this thesis, and the topics of melt generation, transport, and crystallization are discussed in three distinct geologic environments: the Moon's mantle, the Greenland ice sheet, and the Earth's crust. Experiments have been conducted to determine the conditions of origin for two high-titanium magmas from the Moon. The lunar experiments (Chapter 2) were designed to explore the effects of variable oxygen fugacity (fo₂) on the high pressure and high temperature crystallization of olivine and orthopyroxene in high-Ti magmas. The results of these experiments showed that the source regions for the high-Ti lunar magmas are distributed both laterally and vertically within the lunar mantle, and that it is critical to estimate the pre-eruptive oxygen fugacity in order to determine true depth of origin for these magmas within the lunar mantle. Chapter 3 models the behavior of water flow through the Greenland ice sheet driven by hydrofracture of water through ice. The results show that melt water in the ablation zone of Greenland has almost immediate access to the base of the ice sheet in areas with up two kilometers of ice. Chapter 4 is an experimental study of two hydrous high-silica mantle melts from the Mt. Shasta, CA region. Crystallization is simulated at H₂O saturated conditions at all crustal depths, and a new geobarometer-hygrometer based on amphibole magnesium number is calibrated. In Chapter 5 I use the new barometer to study a suite of mafic enclaves from the Mt. Shasta region, and apply it to amphiboles in these enclaves. Evidence for pre-eruptive H₂O contents of up to 14 wt% is presented, and bulk chemical analyses of the inclusions are used to show that extensive magma mixing has occurred at all crustal depths up to 35 km beneath Mt. Shasta. / by Michael James Krawczynski. / Ph.D.
192

Mechanical and geological controls on the long-term evolution of normal faults

Olive, Jean-Arthur Louis January 2015 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2015. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 173-186). / This thesis investigates the long-term evolution of rift-bounding normal faults. To first order, the observed diversity of extensional tectonic styles reflects differences in the maximum offset that can be accommodated on individual faults during their life span. My main objective is to develop a theoretical framework that explains these differences in terms of a few key mechanical and geological controls. I start by laying out the energy cost associated with slip on a normal fault, which consists of (1) overcoming the frictional resistance on the fault, (2) bending the faulted layer and (3) sustaining the growth of topography. In Chapter 2, I propose that flexural rotation of the active fault plane enables faults to evolve along a path of minimal energy, thereby enhancing their life span. Flexural rotation occurs more rapidly in thinner faulted layers, and can potentially explain the wide range of normal fault dips documented with focal mechanisms. In Chapter 3, I show that surface processes can enhance the life span of continental normal faults by reducing the energy cost associated with topography buildup. In Chapter 4, I focus on lithospheric bending induced by fault growth, which is well described by elasto-plastic flexure models. I demonstrate that numerical models that treat the lithosphere as a visco-plastic solid can properly predict fault evolution only when the rate-dependent viscous flexural wavelength of the lithosphere is accommodated within the numerical domain. In Chapter 5, I consider the interplay of faulting and crustal emplacement at a slow mid-ocean ridge. I show that a depth-variable rate of magma emplacement can reconcile the formation of long-lived detachment faults, which requires a moderate melt supply, and the exhumation of large volumes of lower crustal material. Finally, in Chapter 6 I investigate the three-dimensional interactions between normal faults in a lithosphere of varying thickness. I suggest that large along-axis gradients in lithospheric thickness can prevent the growth of continuous faults along-axis, and instead decouple the modes of faulting at the segment center and at the segment end. / by Jean-Arthur Louis Olive. / Ph. D.
193

Sound propagation around underwater seamounts

Sikora, Joseph J., III January 2005 (has links)
Thesis (S.M.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (leaves 120-121). / This thesis develops and utilizes a method for analyzing data from the North Pacific Acoustic Laboratory's (NPAL) Basin Acoustic Seamount Scattering Experiment (BASSEX). BASSEX was designed to provide data to support the development of analytical techniques and methods which improve the understanding of sound propagation around underwater seamounts. The depth-dependent sound velocity profile of typical ocean waveguides force sound to travel in convergence zones about a minimum sound speed depth. This ducted nature of the ocean makes modeling the acoustic field around seamounts particularly challenging, compared to an isovelocity medium. The conical shape of seamounts also adds to the complexity of the scatter field. It is important to the U.S. Navy to understand how sound is diffracted around this type of topographic feature. Underwater seamounts can be used to conceal submarines by absorbing and scattering the sound they emit. BASSEX measurements have characterized the size and shape of the forward scatter field around the Kermit-Roosevelt Seamount in the Pacific Ocean. Kermit-Roosevelt is a large, conical seamount which shoals close to the minimum sound speed depth, making it ideal for study. Acoustic sources, including M-sequence and linear frequency-modulated sources, were stationed around the seamount at megameter ranges. A hydrophone array was towed around the seamount to locations which allowed measurement of the perturbation zone. Results from the method developed in this thesis show that the size and shape of the perturbation zone measured coincides with theoretical and experimental results derived in previous work. / by Joseph J. Sikora, III. / S.M.
194

Linear and nonlinear stratified spindown over sloping topography

Benthuysen, Jessica A January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 199-205). / In a stratified rotating fluid, frictionally driven circulations couple with the buoyancy field over sloping topography. Analytical and numerical methods are used to quantify the impact of this coupling on the vertical circulation, spindown of geostrophic flows, and the formation of a shelfbreak jet. Over a stratified. slope, linear spindown of a geostrophic along-isobath flow induces cross-isobath Ekman flows. Ekman advection of buoyancy weakens the vertical circulation and slows spindown. Upslope (downslope) Ekman flows tend to inject (remove) potential vorticity into (from) the ocean. Momentum advection and nonlinear buoyancy advection are examined in setting asymmetries in the vertical circulation and the vertical relative vorticity field. During nonlinear homogeneous spindown over a flat bottom, momentum advection weakens Ekman pumping and strengthens Ekman suction, while cyclonic vorticity decays faster than anticyclonic vorticity. During nonlinear stratified spindown over a slope, nonlinear advection of buoyancy enhances the asymmetry in Ekman pumping and suction, whereas anticyclonic vorticity can decay faster than cyclonic vorticity outside of the boundary layers. During the adjustment of a spatially uniform geostrophic current over a shelfbreak, coupling between the Ekman flow and the buoyancy field generates Ekman pumping near the shelfbreak, which leads to the formation of a jet. Scalings are presented for the upwelling strength, the length scale over which it occurs, and the timescale for jet formation. The results are applied to the Middle Atlantic Bight shelfbreak. / by Jessica A. Benthuysen. / Ph.D.
195

Quantifying hurricane wind speed with undersea sound

Wilson, Joshua David January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (p. 155-169). / Hurricanes, powerful storms with wind speeds that can exceed 80 m/s, are one of the most destructive natural disasters known to man. While current satellite technology has made it possible to effectively detect and track hurricanes, expensive 'hurricane-hunting' aircraft are required to accurately classify their destructive power. Here we show that passive undersea acoustic techniques may provide a promising tool for accurately quantifying the destructive power of a hurricane and so may provide a safe and inexpensive alternative to aircraft-based techniques. It is well known that the crashing of wind-driven waves generates underwater noise in the 10 Hz to 10 kHz range. Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. / (cont.) Acoustic measurements of the underwater noise generated by hurricane Gert are correlated with meteorological data from reconnaissance aircraft and satellites to show that underwater noise intensity between 10 and 50 Hz is approximately proportional to the cube of the local wind speed. From this it is shown that it should be feasible to accurately measure the local wind speed and quantify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. It has also long been known that hurricanes generate microseisms in the 0.1 to 0.6 Hz frequency range through the non-linear interaction of ocean surface waves. Here we model microseisms generated by the spatially inhomogeneous waves of a hurricane with the non-linear wave equation where a second-order acoustic field is created by first-order ocean surface wave motion. We account for the propagation of microseismic noise through range-dependent waveguide environments from the deep ocean to a receiver on land. We compare estimates based on the ocean surface wave field measured in hurricane Bonnie with seismic measurements from Florida. / by Joshua David Wilson. / Ph.D.
196

Spatial and temporal variability of tide-induced salt flux in a partially mixed estuary

Engel, Patricia Ann January 2009 (has links)
Thesis (S. M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2009. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student submitted PDF version of thesis. / Includes bibliographical references (p. 41-43). / Mechanisms for the tidal component of salt flux in the Hudson River estuary are investigated using a 3D numerical model. Variations with river discharge, fortnightly tidal forcing, and along channel variability are explored. Four river discharge conditions were considered: 1200 m3 s-1, 600 m3 s-1, 300 m3 s-1, 150 m3 s-1. Tide-induced residual salt flux was found to be variable along the channel, with locations of counter-gradient flux during both neap and spring tide. The magnitude of tidal salt flux scales with the river flow and has no clear dependence on the spring-neap tidal forcing. The diffusive fraction, ?, has a value of -0.25 to 0.46 in the lower estuary, increasing to -0.23 to 1 near the head of salt. The phase lag between tidal salinity and velocity is analyzed at three cross-sections with: large positive, negative, and weak tidal salt flux. The composite Froude number, G2, is calculated along the channel and indicates nearly ubiquitous supercritical flow for maximum flood and ebb during both neap and spring tides. Subcritical flow occurs during slack water and at geographically locked locations during neap floods. Application of two-layer, frictional hydraulic theory reveals how variations in channel width and depth generate tidal asymmetries in cross-sectional salinity, the key ingredient of tidal salt flux. / by Patricia Ann Engel. / S.M.
197

Controls on earthquake rupture and triggering mechanisms in subduction zones

Llenos, Andrea Lesley January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Large earthquake rupture and triggering mechanisms that drive seismicity in subduction zones are investigated in this thesis using a combination of earthquake observations, statistical and physical modeling. A comparison of the rupture characteristics of M 7.5 earthquakes with fore-arc geological structure suggests that long-lived frictional heterogeneities (asperities) are primary controls on the rupture extent of large earthquakes. To determine when and where stress is accumulating on the megathrust that could cause one of these asperities to rupture, this thesis develops a new method to invert earthquake catalogs to detect space-time variations in stressing rate. This algorithm is based on observations that strain transients due to aseismic processes such as fluid flow, slow slip, and afters lip trigger seismicity, often in the form of earthquake swarms. These swarms are modeled with two common approaches for investigating time-dependent driving mechanisms in earthquake catalogs: the stochastic Epidemic Type Aftershock Sequence model [Ogata, 1988] and the physically-based rate-state friction model [Dieterich, 1994]. These approaches are combined into a single model that accounts for both aftershock activity and variations in background seismicity rate due to aseismic processes, which is then implemented in a data assimilation algorithm to invert catalogs for space-time variations in stressing rate. The technique is evaluated with a synthetic test and applied to catalogs from the Salton Trough in southern California and the Hokkaido corner in northeastern Japan. The results demonstrate that the algorithm can successfully identify aseismic transients in a multi-decade earthquake catalog, and may also ultimately be useful for mapping spatial variations in frictional conditions on the plate interface. / by Andrea Lesley Llenos. / Ph.D.
198

Geophysical and geochemical constraints on the evolution of oceanic lithosphere from formation to subduction

Horning, Gregory (Gregory William) January 2017 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 104-115). / This thesis investigates the evolution of the oceanic lithosphere in a broad sense from formation to subduction, in a focused case at the ridge, and in a focused case proximal to subduction. In general, alteration of the oceanic lithosphere begins at the ridge through focused and diffuse hydrothermal flow, continues off axis through low temperature circulation, and may occur approaching subduction zones as bending related faulting provides fluid pathways. In Chapter 2 1 use a dataset of thousands of microearthquakes recorded at the Rainbow massif on the Mid-Atlantic Ridge to characterize the processes which are responsible for the long-term, high-temperature, hydrothermal discharge found hosted in this oceanic core complex. I find that the detachment fault responsible for the uplift of the massif is inactive and that the axial valleys show no evidence for faulting or active magma intrusion. I conclude that the continuous, low-magnitude seismicity located in diffuse pattern in a region with seismic velocities indicating ultramafic host rock suggests that serpentinization may play a role in microearthquake generation but the seismic network was not capable of providing robust focal mechanism solutions to constrain the source characteristics. In Chapter 3 I find that the Juan de Fuca plate, which represents the young/hot end-member of oceanic plates, is lightly hydrated at upper crustal levels except in regions affected by propagator wakes where hydration of lower crust and upper mantle is evident. I conclude that at the subduction zone the plate is nearly dry at upper mantle levels with the majority of water contained in the crust. Finally, in Chapter 4 I examine samples of cretaceous age serpentinite sampled just before subduction at the Puerto Rico Trench. I show that these upper mantle rocks were completely serpentinized under static conditions at the Mid-Atlantic Ridge. Further, they subsequently underwent 100 Ma of seafloor weathering wherein the alteration products of serpentinization themselves continue to be altered. I conclude that complete hydration of the upper mantle is not the end point in the evolution of oceanic lithosphere as it spreads from the axis to subduction. / by Gregory Horning. / Ph. D.
199

Application of statistical learning theory to plankton image analysis

Hu, Qiao, Ph. D. Massachusetts Institute of Technology January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2006. / Includes bibliographical references (leaves 155-173). / A fundamental problem in limnology and oceanography is the inability to quickly identify and map distributions of plankton. This thesis addresses the problem by applying statistical machine learning to video images collected by an optical sampler, the Video Plankton Recorder (VPR). The research is focused on development of a real-time automatic plankton recognition system to estimate plankton abundance. The system includes four major components: pattern representation/feature measurement, feature extraction/selection, classification, and abundance estimation. After an extensive study on a traditional learning vector quantization (LVQ) neural network (NN) classifier built on shape-based features and different pattern representation methods, I developed a classification system combined multi-scale cooccurrence matrices feature with support vector machine classifier. This new method outperforms the traditional shape-based-NN classifier method by 12% in classification accuracy. Subsequent plankton abundance estimates are improved in the regions of low relative abundance by more than 50%. Both the NN and SVM classifiers have no rejection metrics. In this thesis, two rejection metrics were developed. / (cont.) One was based on the Euclidean distance in the feature space for NN classifier. The other used dual classifier (NN and SVM) voting as output. Using the dual-classification method alone yields almost as good abundance estimation as human labeling on a test-bed of real world data. However, the distance rejection metric for NN classifier might be more useful when the training samples are not "good" ie, representative of the field data. In summary, this thesis advances the current state-of-the-art plankton recognition system by demonstrating multi-scale texture-based features are more suitable for classifying field-collected images. The system was verified on a very large real-world dataset in systematic way for the first time. The accomplishments include developing a multi-scale occurrence matrices and support vector machine system, a dual-classification system, automatic correction in abundance estimation, and ability to get accurate abundance estimation from real-time automatic classification. The methods developed are generic and are likely to work on range of other image classification applications. / by Qiao Hu. / Ph.D.
200

Target tracking onboard an autonomous underwater vehicle : determining optimal towed array heading in an anisotropic noise field

Parra-Orlandoni, Maria Alejandra January 2007 (has links)
Thesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2007. / Includes bibliographical references (p. 73-76). / In order to overcome the challenges that an anisotropic noise field poses for underwater target tracking, we conduct an onboard estimation of the horizontal noise directionality in the real-time processing suite of an autonomous underwater vehicle (AUV) towing a horizontal line array. The estimation of the noise directionality is a precursor to another adaptive behavior: optimizing tracking capability of a towed array by choosing a particular heading that minimizes the detection level in the target's direction. In each distinct simulated anisotropic noise field, the AUV successfully calculates the optimal towed array headings based on the real-time estimation of the horizontal noise directionality. The findings reveal a clear advantage over the conventional broadside beam tracking method, with some limitations due predominantly to the noise field itself. / by Maria Alejandra Parra-Orlandoni. / S.M.

Page generated in 0.0451 seconds