• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic and economic feasibility analysis of a 20 MW ocean thermal energy conversion (OTEC) power plant

Upshaw, Charles Roberts 30 July 2012 (has links)
Ocean Thermal Energy Conversion (OTEC) is the process of harnessing the temperature differential that exists in the equatorial oceans between the warm surface water and the cool water thousands of feet below to produce electricity. Due to the massive scale of the ocean thermal resources, OTEC power generation is appealing. The purpose of this thesis was to investigate OTEC and assess its potential viability as an energy source from both engineering and economic perspectives. This thesis provides an introduction to the research, and outlines the scope of the project in Chapter 1. Chapter 2 proves an overview of OTEC, from the basic operation and viable locations, to information on some of the major components that make up the plant. Chapter 3 describes the thermodynamics, heat transfer, and fluid mechanics that govern the physical operation of the OTEC plant. Chapter 4 provides an analysis of different plant design parameters to examine effects different parameters have on plant operations and equipment sizing. Chapter 5 describes the cost estimation for an OTEC plant, and provides subsequent analysis by comparing the estimated cost with other technologies and electricity prices from four island communities. The primary research of this thesis was the development of an integrated thermal fluids systems model of a closed-cycle OTEC power plant for the purpose of analyzing the effects of key design parameters on the plant performance. A simple Levelized Cost of Electricity (LCOE) economic model was also developed and integrated with the Thermal Fluid Systems model in order to assess the potential economic viability of a 20 MW OTEC power plant. The analyses from these models suggest that OTEC is definitely viable from an engineering standpoint, but economic viability for a 20 MW plant would likely be limited to small or remote island communities. / text
2

Optimization Of Ocean Thermal Energy Conversion Power Plants

Rizea, Steven Emanoel 01 January 2012 (has links)
A proprietary Ocean Thermal Energy Conversion (OTEC) modeling tool, the Makai OTEC Thermodynamic and Economic Model (MOTEM), is leveraged to evaluate the accuracy of finite-time thermodynamic OTEC optimization methods. MOTEM is a full OTEC system simulator capable of evaluating the effects of variation in heat exchanger operating temperatures and seawater flow rates. The evaluation is based on a comparison of the net power output of an OTEC plant with a fixed configuration. Select optimization methods from the literature are shown to produce between 93% and 99% of the maximum possible amount of power, depending on the selection of heat exchanger performance curves. OTEC optimization is found to be dependent on the performance characteristics of the evaporator and condenser used in the plant. Optimization algorithms in the literature do not take heat exchanger performance variation into account, which causes a discrepancy between their predictions and those calculated with MOTEM. A new characteristic metric of OTEC optimization, the ratio of evaporator and condenser overall heat transfer coefficients, is found. The heat transfer ratio is constant for all plant configurations in which the seawater flow rate is optimized for any particular evaporator and condenser operating temperatures. The existence of this ratio implies that a solution for the ideal heat exchanger operating temperatures could be computed based on the ratio of heat exchanger performance curves, and additional research is recommended.
3

Ocean energy assessment : an integrated methodology

Banerjee, S. January 2011 (has links)
The huge natural energy resources available in the world’s oceans are attracting increasing commercial and political interest. In order to evaluate the status and the degree of acceptability of future Ocean Energy (OE) schemes, it was considered important to develop an Integrated Assessment Methodology (IAM) for ascertaining the relative merits of the competing OE devices being proposed. Initial studies included the gathering of information on the present status of development of the ocean energy systems on wave, OTEC and tidal schemes with the challenges faced for their commercial application. In order to develop the IAM, studies were undertaken for the development and standardization of the assessment tools focussing on: • Life Cycle Assessment (LCA) on emission characteristics. • Energy Accounting (EA) studies. • Environmental Impact Assessment (EIA) over different environmental issues. • Resource captures aspects. • Defining economy evaluation indices. The IAM developed from such studies comprised of four interrelated well defined tasks and six assessment tools. The tasks included the identification of the modus operandi on data collection to be followed (from industry) for assessing respective OE devices, and also advancing relevant guidelines as to the safety standards to be followed, for their deployment at suitable sites. The IAM as developed and validated from case studies in ascertaining relative merits of competing OE devices included: suitable site selection aspects with scope for resource utilisation capability, safety factors for survivability, scope for addressing global warming & energy accounting, the environmental impact assessment both qualitatively and quantitatively on different environmental issues, and the economic benefits achievable. Some of the new ideas and concepts which were also discovered during the development of the IAM, and considered useful to both industry and researchers are given below: • Relative Product Cost (RPC) ratio concept- introduced in making an economic evaluation. This is considered helpful in sensitivity analysis and making design improvements (hybridising etc) for the cost reduction of OE devices. This index thus helps in making feasibility studies on R&D efforts, where the capital cost requirement data and life span of the device is not well defined in the primary stages of development. • Determination of the threshold limit value of the barrage constant - considered useful in determining the efficacy of the planning process. The concept ascertained the relative efficiency achieved for various barrage proposals globally. It could also be applied to suggest the revisions required for certain barrage proposals and also found useful in predicting the basin area of undefined barrage proposal for achieving economic viability. • Estimations made on the future possibility of revenue earnings from the by-products of various OTEC types, including the scope of chemical hubs from grazing type OTEC plants. • Determination of breakeven point- on cost versus life span of wave and OTEC devices studied, which is useful in designing optimum life of the concerned devices. The above stated multi-criterion assessment methodology, IAM, was extended leading to the development of a single criterion model for ascertaining sustainability percent achievable from an OE device and termed IAMs. The IAMs was developed identifying 7 Sustainability Development Indices (SDI) using some the tools of the IAM. A sustainability scale of 0-100 was also developed, attributing a Sustainability Development Load Score (SDLS) percentage distribution pattern over each SDIs, depending on their relative importance in achieving sustainability. The total sum of sustainability development (SD) gained from each SDI gave the IAMs (for the concerned device), indicating the total sustainable percentage achieved. The above IAMs developed, could be applied in ranking OE devices alongside the unsustainable coal power station. A mathematical model of estimating the IAMs was formulated, in order to ascertain the viability to the sustainable development of any energy device. The instruments of IAM and IAMs which have been developed would be helpful to the OE industry in ascertaining the degree of acceptability of their product. In addition it would also provide guidelines for their safe deployment by assessing the relative merits of competing devices. Furthermore, IAM and IAMs would be helpful to researchers undertaking feasibility studies on R&D efforts for material development research, ‘hybridization studies’ (as also new innovations), cost reduction, the performance improvement of respective devices, and any economic gains. With future advancements in OE systems and the availability of field data from large scale commercial applications, the specific values/data of the IAM & IAMs may be refined, but the logic of the models developed in this research would remain the same.
4

Étude de la production d'électricité à partir de l'énergie thermique des mers à l'île de la Réunion : modélisation et optimisation du procédé / Study of electricity production from the ocean thermal energy conversion to the Reunion Island : modelling and process optimization

Sinama, Frantz 07 December 2011 (has links)
L’énergie thermique des mers (ETM) offre une alternative intéressante pour la réduction de l’utilisation des énergies fossiles. En utilisant le gradient de température présent entre l’eau de surface et l’eau en profondeur, il est possible de produire de l’électricité grâce à un cycle thermodynamique. Les expérimentations sont peu nombreuses à l’heure actuelle, en raison d’un coût relativement élevé. Une approche fondamentale est donc développée avec la création de modèles numériques en régime permanent et dynamique. Le modèle en régime statique a été développé à partir d’une description mathématique simplifiée des composants du cycle. Ce modèle permet une évaluation globale des performances du système, incluant le prélèvement et le rejet de l’eau de mer ainsi que le cycle thermodynamique. À partir de la modélisation statique, un modèle dynamique a été établi en appliquant la méthode des systèmes équivalents de Gibbs. Cet outil permet de décrire les phases de démarrage et d’arrêt, d’étudier la modulation de la puissance électrique délivrée au réseau et d’optimiser le cycle. Les résultats de simulations des différents modèles sont confrontés à la littérature et à des données expérimentales, afin d’avoir des éléments de validation. L’un des intérêts du modèle en régime dynamique est la possibilité d’effectuer une analyse de type « premier et second principe » du système. Une optimisation du fonctionnement du cycle est réalisée à partir de cette analyse. Des pistes d’améliorations sont proposées. L’optimisation est réalisée grâce au couplage du modèle dynamique avec l’outil Genopt. Les outils numériques développés permettront d’élaborer des stratégies de contrôle des installations. / Ocean Thermal Energy Conversion (OTEC) offers an interesting alternative for reducing the use of fossil fuels for energy generation. Using the temperature gradient present between the surface water and deep water, it is possible to produce electricity through a thermodynamic cycle. At present, the experiments are limited due to a relatively high cost. A fundamental approach is developed with the creation of numerical models in steady and dynamic state. The model in steady state has been developed from a simplified mathematical description of the components of the cycle. This model allows for an overall assessment of system performance including the withdrawal and discharge of the sea water, as well as the thermodynamic cycle. From the static model, a dynamic model was established using the method of the equivalent Gibbs systems. This tool is used to describe the start-up and shutdown, to study the modulation of the electrical power delivered to the network and to optimize the cycle. The simulation results of the different models are confronted with the literature and experimental data in order to have points of validation. One of the advantages of the model under dynamic conditions is the ability to perform an analysis of the "first and second principle" of the system. Optimization of the operation is carried out from this analysis. Possible improvements are proposed. An optimization of the cycle operation is carried out from this analysis. The optimization is done by coupling the dynamic model with the tool Genopt. The numerical tools developed will permit in addition to develop strategies to control of the power plants.

Page generated in 0.3054 seconds