Spelling suggestions: "subject:"rcr"" "subject:"cocr""
111 |
Um estudo sobre reconhecimento visual de caracteres através de redes neuraisOsorio, Fernando Santos January 1991 (has links)
Este trabalho apresenta um estudo sabre reconhecimento visual de caracteres através da utilização das redes neurais. São abordados os assuntos referentes ao Processamento Digital de Imagens, aos sistemas de reconhecimento de caracteres, e as redes neurais. Ao final é apresentada uma proposta de implementação de um sistema OCR orientado ao reconhecimento de caracteres impressos, que utiliza uma rede neural desenvolvida especificamente para esta aplicação. O sistema proposto, que é denominado de sistema N2OCR, possui um protótipo implementado que também é descrito neste trabalho. Em relação ao Processamento Digital de Imagens são apresentados diversos temas, abrangendo os assuntos referentes à aquisição de imagens, ao tratamento das imagens e ao reconhecimento de padrões. A respeito da aquisição de imagens são destacados os aspectos referentes aos dispositivos de aquisição e os tipos de imagens obtidas através destes. Sobre o tratamento de imagens são abordados os aspectos referentes a imagens textuais, incluindo: halftoning, geração e modificação de histograma, limiarização e operações de filtragem. Quanto ao reconhecimento de padrões é feita uma breve análise das técnicas relacionadas a este tema. Os diversos tipos de sistemas de reconhecimento de caracteres são abordados, assim coma as técnicas e algoritmos empregados por estes. Além destes tópicos é apresentada uma discussão a respeito da avaliação dos resultados obtidos por estes sistemas, assim como é feita uma análise das principais dificuldades enfrentadas por estas aplicações. Neste trabalho é feita uma apresentação a respeito das redes neurais, suas características, histórico e evolução das pesquisas nesta área. É feita uma descrição dos principais modelos de redes neurais em destaque na atualidade: Perceptron, Adaline, Madaline, redes multinível, ART, modelo de Hopfield, máquina de Boltzmann, BAM e modelo de Kohonen. A partir da análise dos diferentes modelos de redes neurais empregados na atualidade, chega-se a proposta de um novo modelo de rede a ser utilizado pelo sistema N2OCR. São descritos os itens referentes ao aprendizado, ao reconhecimento e as possíveis extensões deste novo modelo. Também é abordada a possibilidade de implementação de um hardware dedicado para este modelo. No final deste trabalho é fornecida uma visão global do sistema N2OCR, descrevendo cada um de seus módulos. Também é feita uma descrição do protótipo implementado e de suas funções. / This work presents a study of visual character recognition using neural networks. It describes some aspects related to Digital Image Processing, character recognition systems and neural networks. The implementation proposal of one OCR system, for printed character recognition, is also presented. This system uses one neural network specifically developed for this purpose. The OCR system, named N2OCR, has a prototype implementation, which is also described. Several topics related to Digital Image Processing are presented, including some referent to image acquisition, image processing and pattern recognition. Some aspects on image acquisiton are treated, like acquisition equipments and kinds of image data obtained from those equipments. The following items about text image processing are mentioned: halftoning, hystogram generation and alteration, thresholding and filtering operations. A brief analysis about pattern recognition related to this theme is done. Different kinds of character recognition systems are described, as the techniques and algorithms used by them. Besides, a di cussi on about performance estimation of this OCR systems is done, including typical OCR problems description and analysis. In this work, neural networks are presented, describing their characteristics, historical aspects and research evolution in this field. Different famous neural network models are described: Perceptron, Adaline, Madaline, multilevel networks. ART, Hopfield's model , Boltzmann machine, BAM and Kohonen's model. From the analysis of such different neural network models, we arrive to a proposal of a new neural net model, where are described items related to learning, recognition and possible model extensions. A possible hardware implementation of this model is also presented. A global vision of N2OCR system is presented at the end of this work, describing each of its modules. A description of the prototype implementation and functions is also provided.
|
112 |
Optical character recognition using deep learning / Reconhecimento óptico de caracteres usando aprendizado profundoSantos, Claudio Filipi Gonçalves dos 26 April 2018 (has links)
Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-24T11:51:59Z
No. of bitstreams: 1
optical-character-recognition-16052018.pdf: 8334356 bytes, checksum: 8dd05363a96c946ae1f6d665edc80d09 (MD5) / Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo:
Problema 01) Falta a FOLHA DE APROVAÇÃO (Obrigatório pela ABNT NBR14724)
Problema 02) Corrigir a ordem das páginas pré-textuais; a ordem correta (capa, folha de rosto, dedicatória, agradecimentos, epígrafe, resumo na língua vernácula, resumo em língua estrangeira, listas de ilustrações, de tabelas, de abreviaturas, de siglas e de símbolos e sumário).
Problema 03) Faltam as palavras-chave no resumo e no abstracts.
Na página da Seção de pós-graduação, em Instruções para Qualificação e Defesas de Dissertação e Tese, você pode acessar o modelo das páginas pré-textuais.
Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente.
Agradecemos a compreensão. on 2018-05-24T20:59:53Z (GMT) / Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-25T00:43:19Z
No. of bitstreams: 1
optical-character-recognition-16052018.pdf: 11084990 bytes, checksum: 6f8d7431cd17efd931a31c0eade10c65 (MD5) / Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo:
Problema 01) Falta a FOLHA DE APROVAÇÃO (Obrigatório pela ABNT NBR14724)
Problema 02) A paginação deve ser sequencial, iniciando a contagem na folha de rosto e mostrando o número a partir da introdução, a ficha catalográfica ficará após a folha de rosto e não deverá ser contada.
Problema 03) Na descrição do item: Título em outro idioma – Se você colocou no título em inglês deve por neste campo o título em outro idioma (ex: português, espanhol, francês...)
Estamos encaminhando via e-mail o template/modelo para que você possa fazer as correções.
Lembramos que o arquivo depositado no repositório deve ser igual ao impresso, o rigor com o padrão da Universidade se deve ao fato de que o seu trabalho passará a ser visível mundialmente.
Agradecemos a compreensão.
on 2018-05-25T15:22:45Z (GMT) / Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-25T15:52:53Z
No. of bitstreams: 1
optical-character-recognition-16052018.pdf: 11089966 bytes, checksum: d6c863077a995bd2519035b8a3e97c80 (MD5) / Rejected by Elza Mitiko Sato null (elzasato@ibilce.unesp.br), reason: Solicitamos que realize correções na submissão seguindo as orientações abaixo:
Problema 01) Falta a FOLHA DE APROVAÇÃO (Obrigatório pela ABNT NBR14724)
Agradecemos a compreensão.
on 2018-05-25T18:03:19Z (GMT) / Submitted by Claudio Filipi Gonçalves dos Santos (cfsantos85@gmail.com) on 2018-05-25T18:08:09Z
No. of bitstreams: 1
Claudio Filipi Gonçalves dos Santos Corrigido Biblioteca.pdf: 8257484 bytes, checksum: 3a61ebfa8e1d16c9d0c694f46b979c1f (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-05-25T18:51:24Z (GMT) No. of bitstreams: 1
santos_cfg_me_sjrp.pdf: 8257484 bytes, checksum: 3a61ebfa8e1d16c9d0c694f46b979c1f (MD5) / Made available in DSpace on 2018-05-25T18:51:24Z (GMT). No. of bitstreams: 1
santos_cfg_me_sjrp.pdf: 8257484 bytes, checksum: 3a61ebfa8e1d16c9d0c694f46b979c1f (MD5)
Previous issue date: 2018-04-26 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Detectores óticos de caracteres, ou Optical Character Recognition (OCR) é o nome dado à técnologia de traduzir dados de imagens em arquivo de texto. O objetivo desse projeto é usar aprendizagem profunda, também conhecido por aprendizado hierárquico ou Deep Learning para o desenvolvimento de uma aplicação com a habilidade de detectar áreas candidatas, segmentar esses espaços dan imagem e gerar o texto contido na figura. Desde 2006, Deep Learning emergiu como uma nova área em aprendizagem de máquina. Em tempos recentes, as técnicas desenvolvidas em pesquisas com Deep Learning têm influenciado e expandido escopo, incluindo aspectos chaves nas área de inteligência artificial e aprendizagem de máquina. Um profundo estudo foi conduzido com a intenção de desenvolver um sistema OCR usando apenas arquiteturas de Deep Learning.A evolução dessas técnicas, alguns trabalhos passados e como esses trabalhos influenciaram o desenvolvimento dessa estrutura são explicados nesse texto. Essa tese demonstra com resultados como um classificador de caracteres foi desenvolvido. Em seguida é explicado como uma rede neural pode ser desenvolvida para ser usada como um detector de objetos e como ele pode ser transformado em um detector de texto. Logo após é demonstrado como duas técnicas diferentes de Deep Learning podem ser combinadas e usadas na tarefa de transformar segmentos de imagens em uma sequência de caracteres. Finalmente é demonstrado como o detector de texto e o sistema transformador de imagem em texto podem ser combinados para se desenvolver um sistema OCR completo que detecta regiões de texto nas imagens e o que está escrito nessa região. Esse estudo demonstra que a idéia de usar apenas estruturas de Deep Learning podem ter performance melhores do técnicas baseadas em outras áreas da computação como por exemplo o processamento de imagens. Para detecção de texto foi alcançado mais de 70% de precisão quando uma arquitetura mais complexa foi usada, por volta de 69% de traduções de imagens para texto corretas e por volta de 50% na tarefa ponta-à-ponta de detectar as áreas de texto e traduzi-las em sequência de caracteres. / Optical Character Recognition (OCR) is the name given to the technology used to translate image data into a text file. The objective of this project is to use Deep Learning techniques to develop a software with the ability to segment images, detecting candidate characters and generating textthatisinthepicture. Since2006,DeepLearningorhierarchicallearning, emerged as a new machine learning area. Over recent years, the techniques developed from deep learning research have influenced and expanded scope, including key aspects of artificial intelligence and machine learning. A thorough study was carried out in order to develop an OCR system using only Deep Learning architectures. It is explained the evolution of these techniques, some past works and how they influenced thisframework’sdevelopment. Inthisthesisitisdemonstratedwithresults how a single character classifier was developed. Then it is explained how a neural network can be developed to be an object detector and how to transform this object detector into a text detector. After that it shows how a set of two Deep Learning techniques can be combined and used in the taskoftransformingacroppedregionofanimageinastringofcharacters. Finally, it demonstrates how the text detector and the Image-to-Text systemswerecombinedinordertodevelopafullend-to-endOCRsystemthat detects the regions of a given image containing text and what is written in this region. It shows the idea of using only Deep Learning structures can outperform other techniques based on other areas like image processing. In text detection it reached over 70% of precision when a more complex architecture was used, around 69% of correct translation of image-to-text areasandaround50%onend-to-endtaskofdetectingareasandtranslating them into text. / 1623685
|
113 |
Creation of a customised character recognition applicationSandgren, Frida January 2005 (has links)
This master’s thesis describes the work in creating a customised optical character recognition (OCR) application; intended for use in digitisation of theses submitted to the Uppsala University in the 18th and 19th centuries. For this purpose, an open source software called Gamera has been used for recognition and classification of the characters in the documents. The software provides specific algorithms for analysis of heritage documents and is designed to be used as a tool for creating domain-specific (i.e. customised) recognition applications. By using the Gamera classifier training interface, classifier data was created which reflects the characters in the particular theses. The data can then be used in automatic recognition of ‘new’ characters, by loading it into one of Gamera’s classifiers. The output of Gamera are sets of classified glyphs (i.e. small images of characters), stored in an XML-based format. However, as OCR typically involves translation of images of text into a machine-readable format, a complementary OCR-module was needed. For this purpose, an external Gamera module for page segmentation was modified and used. In addition, a script for control of the OCR-process was created, which initiates the page segmentation on Gamera classified glyphs. The result is written to text files. Finally, in a test for recognition accuracy, one of the theses was used for creation of training data and for test of data. The result from the test show an average accuracy rate of 82% and that there is a need for a better pre-processing module which removes more noise from the images, as well as recognises different character sizes in the images before they are run by the OCR-process.
|
114 |
Rozpoznávání znaků z realných scén pomocí neuronových sítí / Character recognition of real scenes using neural networksFiala, Petr January 2014 (has links)
This thesis focuses on a problem of character recognition from real scenes, which has earned significant amount of attention with the development of modern technology. The aim of the paper is to use an algorithm that has state-of-art performance on standard data sets and apply it for the recognition task. The chosen algorithm is a convolution network with deep structure where the application of the specified model has not yet been published. The implemented solution is built on theoretical parts which are provided in comprehensive overview. Two types of neural network are used in the practical part: a multilayer perceptron and the convolution model. But as the complex structure of the convolution networks gives much better performance compare with the classification error of the MLP on the first data set, only the convolution structure is used in the further experiments. The model is validated on two public data sets that correspond with the specification of the task. In order to obtain an optimal solution based on the data structure several tests had been made on the modificated network and with various adjustments on the input data. Presented solution provided comparable prediction rate compare to the best results of the other studies while using artificially generated learning pattern. In conclusion, the thesis describes possible extensions and improvements of the model, which should lead to the decrease of the classification error.
|
115 |
Vyhodnocení testových formulářů pomocí OCR / Test form evaluation by OCRNoghe, Petr January 2013 (has links)
This thesis deals with the evaluation forms using optical character recognition. Image processing and methods used for OCR is described in the first part of thesis. In the practical part is created database of sample characters. The chosen method is based on correlation between patterns and recognized characters. The program is designed in a graphical environment MATLAB. Finally, several forms are evaluated and success rate of the proposed program is detected.
|
116 |
Zpracování obrazu v systému Android - detekce a rozpoznání SPZ/RZ / Image processing using Android deviceHortai, František January 2014 (has links)
This thesis describes the design and workflow of creating an image processing application in Android system, and what are the possibilities in choosing development environment and how to implement them. Then I am writing about my solutions of creating applications, graphical user interface and an interface for Android. I am describing my approach in the design and functionality of the application, communication with the camera, storing and retrieving data. Further I explain which algorithms were implemented for image processing and image evaluation. Product of this thesis is a functioning application that allows to its user to capture images and video stream. The algorithm evaluates the entering data and shows the location of the number plate. The application also allows recognizing texts and numbers from images. There are other various practical features and options implemented within the application.
|
117 |
Zpracování obrazu v systému Android - odečet hodnoty plynoměru / Image processing using Android device - gas-meter value recognitionWertheim, Michal January 2015 (has links)
This thesis describes the design of the image processing for Android system, consisting of the choice of the development environment and its implementation. Workflow solution to the problem involves development of the Androidapplication and it’s graphical user interface. The text includes description of the application functionality, communicationwith a camera, storing and retrieving data. It also describes used algorithms and image processing methods used for detecting values from the counter of the gas meter.
|
118 |
Návrh algoritmu pro anonymizaci ultrazvukových dat na úrovni snímku / Design of algorithm for anonymization of ultrasound dataBugnerová, Pavla January 2017 (has links)
This master’s thesis is focused on anonymization of ultrasound data in DICOM format. Haar wavelet belonging to Daubechies wavelet family is used to detect text areas in the image. Extraction of the text from the image is done using a free tool - tesseract OCR Engine. Finally, detected text is compared to sensitive data from DICOM metadata using Levenshtein - edit distance algorithm.
|
119 |
Merkmalsextraktion für die Klassifikation von Bestandteilen in Dokument-BildernPoller, Andreas 20 November 2005 (has links)
Am Institut für Print- und Medientechnik an der TU Chemnitz wird ein System entwickelt, welches gescannte Dokumente archivieren soll. Im Gegensatz zu bereits existierenden OCR-Systemen, sollen diese Dokumente hier jedoch nicht mittels einer Schrifterkennung verarbeitet werden. Vielmehr sind Textbereiche in den gescannten Vorlagen zu vektorisieren. Bereiche mit Grafiken und Illustrationen werden bei diesem Verfahren als ein Bildvektor gespeichert. Diese Vorgehensweise soll es ermöglichen, auch Dokumente mit Schriftsymbolen effizient zu archivieren, die keinen "herkömmlichen" Schriftsätzen zugehörig sind.
Diese Studienarbeit stellt Merkmalsextraktionsverfahren vor, die aus einem gegebenen Teil (Segment) eines Dokumentenscans Merkmale extrahieren, die es ermöglichen sollen, diesen mittels eines Klassifikationsverfahrens einer Klasse Textblock oder einer Klasse Grafikblock zuzuordnen. Zusätzlich werden zwei Klassifikationsverfahren, ein Entscheidungsbaum und eine Fuzzy-Logik, auf die Nutzbarkeit für einen solchen Mustererkennungsprozess überprüft. Als Textblöcke erkannte Bereiche werden im zu entwickelnden Gesamtverfahren dann in nachfolgenden Verarbeitungsschritten einer Vektorisierung zugeführt.
|
120 |
Rozpoznávač psaného textu pro mobilní telefony / Recognition of Handwriting for Mobile PhonesTalaš, Vladimír Unknown Date (has links)
The goal of this project is to create a mobile phone application, which can use phone camera to get a photography. This photography contains text, application has an ability to find a text, recognize all characters and send output as SMS. In this application there are implemented algorithms for text recognize from pictures based on Hidden Markovov Models. The particular stress is put on training of the model, to maximalise a succes of text recognition. There are some experiments model training with model variables, which are leading in better ability of text recognition. It was achieved a value of 97% succesfully recognized characters.
|
Page generated in 0.0288 seconds