• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel P300 speller with motor imagery embedded in a traditional oddball paradigm.

Karnad, Vaishnavi 05 May 2011 (has links)
A Brain Computer Interface (BCI) provides a means, to control external devices, through the electrical activity of the brain, bypassing motor movement. Recent years have seen an increase in the application of P300 cognitive potential as a control and/or communication signal for the motor restoration in paralyzed patients, such as those in the later stages of ALS (Amyotrophic lateral sclerosis). Although many of these patients are in locked-in state i.e. where motor control is not possible, their cognition is known to remain intact. The P300 speller paradigm explored in this study relying on this cognition represented by the P300 peak potential in EEG (Electroencephalography) signals to restore communication. The conventional visual oddball paradigms used to elicit P300 potential may not be the optimum choice due to their need for precise eye-gazing, which may be challenge for many patients. This study introduces a novel paradigm with motor imagery as a secondary after-stimulus task in a traditional visual oddball paradigm for P300 Speller application. We observed increased P300 peak amplitude as well as the event-related desynchronization (ERD) associated with motor imagery in six healthy novice subjects. Acceptable detection accuracy was obtained in the five-trial averaged signals from 250 ms to 750 ms after the visual stimulation, whereby the early visual evoked potentials were excluded from classification. As an enhancement, efforts are being made to assess implementation by motor imagery embedded in an auditory oddball paradigm which would minimize the need for eye-gazing further. We can conclude from the results of this study that the proposed paradigm with motor imagery embedded in a traditional visual oddball paradigm might be a feasible option for communication restoration in paralyzed patients.
2

Microsaccadic Inhibition and P300 Enhancement in a Visual Oddball Task

Valsecchi, Matteo, Dimigen, Olaf, Kliegl, Reinhold, Sommer, Werner, Turatto, Massimo January 2009 (has links)
It has recently been demonstrated that the presentation of a rare target in a visual oddball paradigm induces a prolonged inhibition of microsaccades. In the field of electrophysiology, the amplitude of the P300 component in event-related potentials (ERP) has been shown to be sensitive to the stimulus category (target vs. non target) of the eliciting stimulus, its overall probability, and the preceding stimulus sequence. In the present study we further specify the functional underpinnings of the prolonged microsaccadic inhibition in the visual oddball task, showing that the stimulus category, the frequency of a stimulus and the preceding stimulus sequence influence microsaccade rate. Furthermore, by co-recording ERPs and eye-movements, we were able to demonstrate that, despite being largely sensitive to the same experimental manipulation, the amplitude of P300 and the microsaccadic inhibition predict each other very weakly, and thus constitute two independent measures of the brain’s response to rare targets in the visual oddball paradigm.
3

The Psychophysiology of Novelty Processing: Do Brain Responses to Deviance Predict Recall, Recognition and Response Time?

Kamp, Siri-Maria 01 January 2013 (has links)
Events that violate expectations are biologically significant and accordingly elicit various physiological responses. We investigated the functional relationship between three of these responses: the P300, the Novelty P3 and the pupil dilation response (PDR), with a particular focus on their co-variance with reaction time and measures of subsequent memory. In a modified Novelty P3 oddball paradigm, participants semantically categorized a sequence of stimuli including (1) words of a frequent category, (2) words of an infrequent category (14% of the trials) and (3) pictures of the frequent category (14% of the trials). The Novelty P3 oddball task was followed by a recall- and a recognition test. Larger amplitudes of the P300, identified by a spatial principal component analysis (PCA), were associated with enhanced subsequent recall as well as faster reaction times during the recognition test, suggesting a close relationship between the cognitive process indexed by the P300 and memory encoding. The PDR was larger for infrequents (which required a response switch) than both frequents and pictures (which did not require a switch). Furthermore, its latency was correlated with reaction time on the same trial and with reaction time on the immediately following trial. There was only weak evidence for a correlation with subsequent memory, suggesting that the cognitive process associated with the PDR might be a direct link in the stimulus-response stream. Larger Novelty P3 amplitudes were associated with both faster reaction times on the same trial and stronger memory traces, suggesting that its amplitude might index resource allocation. These findings suggest that each of the physiological responses carries a distinct functional significance in detecting, processing, or responding to novel events, and we discuss the findings in the light of the prevalent theories of the functional significance of each response.
4

BCIs That Use P300 Event-Related Potentials

Sellers, Eric W., Arbel, Yael, Donchin, Emanuel 24 May 2012 (has links)
Event-related brain potentials (ERPs) in electroencephalography are manifestations at the scalp of neural activity that is triggered by, and is involved in, the processing of specific events. This chapter focuses on braincomputer interfaces (BCIs) that use P300, an endogenous ERP component. The P300 is a positive potential that occurs over central-parietal scalp 250- 700 msec after a rare event occurs in the context of the oddball paradigm. This paradigm has three essential attributes: a subject is presented with a series of events (i.e., stimuli), each of which falls into one of two classes; the events that fall into one of the classes are less frequent than those that fall into the other class; and the subject performs a task that requires classifying each event into one of the two classes.
5

CONTEXTUAL MODULATION OF NEURAL RESPONSES IN THE MOUSE VISUAL SYSTEM

Alexandr Pak (10531388) 07 May 2021 (has links)
<div>The visual system is responsible for processing visual input, inferring its environmental causes, and assessing its behavioral significance that eventually relates to visual perception and guides animal behavior. There is emerging evidence that visual perception does not simply mirror the outside world but is heavily influenced by contextual information. Specifically, context might refer to the sensory, cognitive, and/or behavioral cues that help to assess the behavioral relevance of image features. One of the most famous examples of such behavior is visual or optical illusions. These illusions contain sensory cues that induce a subjective percept that is not aligned with the physical nature of the stimulation, which, in turn, suggests that a visual system is not a passive filter of the outside world but rather an active inference machine.</div><div>Such robust behavior of the visual system is achieved through intricate neural computations spanning several brain regions that allow dynamic visual processing. Despite the numerous attempts to gain insight into those computations, it has been challenging to decipher the circuit-level implementation of contextual processing due to technological limitations. These questions are of great importance not only for basic research purposes but also for gaining deeper insight into neurodevelopmental disorders that are characterized by altered sensory experiences. Recent advances in genetic engineering and neurotechnology made the mouse an attractive model to study the visual system and enabled other researchers and us to gain unprecedented cellular and circuit-level insights into neural mechanisms underlying contextual processing.</div><div>We first investigated how familiarity modifies the neural representation of stimuli in the mouse primary visual cortex (V1). Using silicon probe recordings and pupillometry, we probed neural activity in naive mice and after animals were exposed to the same stimulus over the course of several days. We have discovered that familiar stimuli evoke low-frequency oscillations in V1. Importantly, those oscillations were specific to the spatial frequency content of the familiar stimulus. To further validate our findings, we investigated how this novel form of visual learning is represented in serotonin-transporter (SERT) deficient mice. These transgenic animals have been previously found to have various neurophysiological alterations. We found that SERT-deficient animals showed longer oscillatory spiking activity and impaired cortical tuning after visual learning. Taken together, we discovered a novel phenomenon of familiarity-evoked oscillations in V1 and utilized it to reveal altered perceptual learning in SERT-deficient mice.</div><div>16</div><div>Next, we investigated how spatial context influences sensory processing. Visual illusions provide a great opportunity to investigate spatial contextual modulation in early visual areas. Leveraging behavioral training, high-density silicon probe recordings, and optogenetics, we provided evidence for an interplay of feedforward and feedback pathways during illusory processing in V1. We first designed an operant behavioral task to investigate illusory perception in mice. Kanizsa illusory contours paradigm was then adapted from primate studies to mouse V1 to elucidate neural correlates of illusory responses in V1. These experiments provided behavioral and neurophysiological evidence for illusory perception in mice. Using optogenetics, we then showed that suppression of the lateromedial area inhibits illusory responses in mouse V1. Taken together, we demonstrated illusory responses in mice and their dependence on the top-down feedback from higher-order visual areas.</div><div>Finally, we investigated how temporal context modulates neural responses by combining silicon probe recordings and a novel visual oddball paradigm that utilizes spatial frequency filtered stimuli. Our work extended prior oddball studies by investigating how adaptation and novelty processing depends on the tuning properties of neurons and their laminar position. Furthermore, given that reduced adaptation and sensory hypersensitivity are one of the hallmarks of altered sensory experiences in autism, we investigated the effects of temporal context on visual processing in V1 of a mouse model of fragile X syndrome (FX), a leading monogenetic cause of autism. We first showed that adaptation was modulated by tuning properties of neurons in both genotypes, however, it was more confined to neurons preferring the adapted feature in FX mice. Oddball responses, on the other hand, were modulated by the laminar position of the neurons in WT with the strongest novelty responses in superficial layers, however, they were uniformly distributed across the cortical column in FX animals. Lastly, we observed differential processing of omission responses in FX vs. WT mice. Overall, our findings suggest that reduced adaptation and increased oddball processing might contribute to altered perceptual experiences in FX and autism.</div>

Page generated in 0.0596 seconds