• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 1
  • Tagged with
  • 15
  • 15
  • 11
  • 8
  • 8
  • 8
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Localiza??o de um rob? m?vel usando odometria e marcos naturais

Bezerra, Clauber Gomes 08 March 2004 (has links)
Made available in DSpace on 2014-12-17T14:56:01Z (GMT). No. of bitstreams: 1 ClauberGB.pdf: 726956 bytes, checksum: d3fb1b2d7c6ad784a1b7d40c1a54f8f8 (MD5) Previous issue date: 2004-03-08 / Several methods of mobile robot navigation request the mensuration of robot position and orientation in its workspace. In the wheeled mobile robot case, techniques based on odometry allow to determine the robot localization by the integration of incremental displacements of its wheels. However, this technique is subject to errors that accumulate with the distance traveled by the robot, making unfeasible its exclusive use. Other methods are based on the detection of natural or artificial landmarks present in the environment and whose location is known. This technique doesnt generate cumulative errors, but it can request a larger processing time than the methods based on odometry. Thus, many methods make use of both techniques, in such a way that the odometry errors are periodically corrected through mensurations obtained from landmarks. Accordding to this approach, this work proposes a hybrid localization system for wheeled mobile robots in indoor environments based on odometry and natural landmarks. The landmarks are straight lines de.ned by the junctions in environments floor, forming a bi-dimensional grid. The landmark detection from digital images is perfomed through the Hough transform. Heuristics are associated with that transform to allow its application in real time. To reduce the search time of landmarks, we propose to map odometry errors in an area of the captured image that possesses high probability of containing the sought mark / Diversos m?todos de navega??o de rob?s m?veis requerem a medi??o da posi??o e orienta??o do rob? no seu espa?o de trabalho. No caso de rob?s m?veis com rodas, t?cnicas baseadas em odometria permitem determinar a localiza??o do rob? atrav?s da integra??o de medi??es dos deslocamentos incrementais de suas rodas. No entanto, essa t?cnica est? sujeita a erros que se acumulam com a dist?ncia percorrida pelo rob?, o que inviabiliza o seu uso exclusivo. Outros m?todos se baseiam na detec??o de marcos naturais ou artificiais, cuja localiza??o ? conhecida, presentes no ambiente. Apesar desta t?cnica n?o gerar erros cumulativos, ela pode requisitar um tempo de processamento bem maior do que o uso de odometria. Assim, muitos m?todos fazem uso de ambas as t?cnicas, de modo a corrigir periodicamente os erros de odometria, atrav?s de medi??es obtidas a partir dos marcos. De acordo com esta abordagem, propomos neste trabalho um sistema h?brido de localiza??o para rob?s m?veis com rodas em ambientes internos, baseado em odometria e marcos naturais, onde os marcos adotados s?o linhas retas definidas pelas jun??es existentes no piso do ambiente, formando uma grade bi-dimensional no ch?o. Para a detec??o deste tipo de marco, a partir de imagens digitais, ? utilizada a transformada de Hough, associada a heur?sticas que permitem a sua aplica??o em tempo real. Em particular, para reduzir o tempo de busca dos marcos, propomos mapear erros de odometria em uma regi?o da imagem capturada que possua grande probabilidade de conter o marco procurado
12

SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas / SiameseVO-Depth: visual odometry through siamese neural networks

Santos, Vinícius Araújo 11 October 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-21T11:05:44Z No. of bitstreams: 2 Dissertação - Vinícius Araújo Santos - 2018.pdf: 14601054 bytes, checksum: e02a8bcd3cdc93bf2bf202c3933b3f27 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-21T11:06:26Z (GMT) No. of bitstreams: 2 Dissertação - Vinícius Araújo Santos - 2018.pdf: 14601054 bytes, checksum: e02a8bcd3cdc93bf2bf202c3933b3f27 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-11-21T11:06:26Z (GMT). No. of bitstreams: 2 Dissertação - Vinícius Araújo Santos - 2018.pdf: 14601054 bytes, checksum: e02a8bcd3cdc93bf2bf202c3933b3f27 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-11 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Visual Odometry is an important process in image based navigation of robots. The standard methods of this field rely on the good feature matching between frames where feature detection on images stands as a well adressed problem within Computer Vision. Such techniques are subject to illumination problems, noise and poor feature localization accuracy. Thus, 3D information on a scene may mitigate the uncertainty of the features on images. Deep Learning techniques show great results when dealing with common difficulties of VO such as low illumination conditions and bad feature selection. While Visual Odometry and Deep Learning have been connected previously, no techniques applying Siamese Convolutional Networks on depth infomation given by disparity maps have been acknowledged as far as this work’s researches went. This work aims to fill this gap by applying Deep Learning to estimate egomotion through disparity maps on an Siamese architeture. The SiameseVO-Depth architeture is compared to state of the art techniques on OV by using the KITTI Vision Benchmark Suite. The results reveal that the chosen methodology succeeded on the estimation of Visual Odometry although it doesn’t outperform the state-of-the-art techniques. This work presents fewer steps in relation to standard VO techniques for it consists of an end-to-end solution and demonstrates a new approach of Deep Learning applied to Visual Odometry. / Odometria Visual é um importante processo na navegação de robôs baseada em imagens. Os métodos clássicos deste tema dependem de boas correspondências de características feitas entre imagens sendo que a detecção de características em imagens é um tema amplamente discutido no campo de Visão Computacional. Estas técnicas estão sujeitas a problemas de iluminação, presença de ruído e baixa de acurácia de localização. Nesse contexto, a informação tridimensional de uma cena pode ser uma forma de mitigar as incertezas sobre as características em imagens. Técnicas de Deep Learning têm demonstrado bons resultados lidando com problemas comuns em técnicas de OV como insuficiente iluminação e erros na seleção de características. Ainda que já existam trabalhos que relacionam Odometria Visual e Deep Learning, não foram encontradas técnicas que utilizem Redes Convolucionais Siamesas com sucesso utilizando informações de profundidade de mapas de disparidade durante esta pesquisa. Este trabalho visa preencher esta lacuna aplicando Deep Learning na estimativa do movimento por de mapas de disparidade em uma arquitetura Siamesa. A arquitetura SiameseVO-Depth proposta neste trabalho é comparada à técnicas do estado da arte em OV utilizando a base de dados KITTI Vision Benchmark Suite. Os resultados demonstram que através da metodologia proposta é possível a estimativa dos valores de uma Odometria Visual ainda que o desempenho não supere técnicas consideradas estado da arte. O trabalho proposto possui menos etapas em comparação com técnicas clássicas de OV por apresentar-se como uma solução fim-a-fim e apresenta nova abordagem no campo de Deep Learning aplicado à Odometria Visual.
13

[pt] ESTIMATIVA DE TRAJETÓRIA BASEADA EM NAVEGAÇÃO INERCIAL E ODOMETRIA VISUAL PARA DISPOSITIVO BIOMÉDICO PORTÁTIL / [en] TRAJECTORY ESTIMATION BASED ON INERTIAL NAVIGATION AND VISUAL ODOMETRY FOR A PORTABLE BIOMEDICAL DEVICE

ANDRE JARDIM PEREIRA PINTO 24 February 2025 (has links)
[pt] As práticas atuais de imageamento de corpos estranhos dentro do corpo humano utilizam técnicas de radiografia, que apresentam uma série de limitações e problemas para a saúde do operador e do paciente. Alternativas para localizar esses corpos estranhos vêm sendo estudadas, buscando o uso de magnetômetros, como o GMI e o GMR, para medir a intensidade do campo magnético de objetos metálicos. Para desenvolver um dispositivo portátil que utilize um magnetômetro capaz de identificar a intensidade do campo magnético de um corpo estranho metálico, é essencial que o mapeamento da posição deste dispositivo tenha alta precisão e replicabilidade, garantindo assim maior segurança para o paciente. Esta dissertação busca estudar métodos de navegação inercial, utilizando um IMU (Inertial Measurement Unit) para estimar a posição através da aceleração e velocidade de rotação, e odometria visual, que usa uma câmera para estimar a posição através de uma sequência de imagens de uma determinada trajetória. Estudos comparativos entre as duas metodologias foram realizados, destacando as principais fontes de erro de cada uma e suas vantagens e desvantagens para a aplicação desejada. Os dados do IMU e os vídeos foram coletados utilizando um Raspberry Pi dentro de uma caixa impressa em 3D, capaz de se encaixar em uma calha reta de alumínio. Esta configuração reduziu as principais fontes de erro humano, permitindo análises com menos graus de liberdade. Após as análises com a calha de alumínio, foram realizados ensaios adicionais envolvendo mais graus de liberdade, utilizando calhas curvas impressas em 3D e à mão livre, buscando verificar o desempenho das metodologias em situações mais próximas da aplicação final: um dispositivo portátil de localização de corpos estranhos. / [en] Current practices for imaging foreign bodies within the human body use radiographic techniques, which present several limitations and health problems for both the operator and the patient. Alternatives for locating these foreign bodies are being studied, focusing on the use of magnetometers, such as GMI and GMR, to measure the magnetic field intensity of metallic objects. To develop a portable device that uses a magnetometer capable of identifying the magnetic field intensity of a metallic foreign body, it is essential that the positioning of this device is mapped with high precision and replicability, thus ensuring greater safety for the patient. This dissertation aims to study inertial navigation methods, using an IMU (Inertial Measurement Unit) to estimate position through acceleration and rotational velocity, and visual odometry, which uses a camera to estimate position through a sequence of images of a given trajectory. Comparative studies between the two methodologies were carried out, highlighting the main sources of error of each and their advantages and disadvantages for the desired application. The IMU data and videos were collected using a Raspberry Pi inside a 3D-printed box that fits into a straight aluminum rail. This setup reduced the main sources of human error, allowing analyses with fewer degrees of freedom. After the analyses with the aluminum rail, additional tests involving more degrees of freedom were conducted using curved 3D-printed rails and freehand, aiming to verify the performance of the methodologies in situations closer to the final application: a portable device for localizing foreign bodies.
14

Lokalizace mobilního robota v prostředí / Localisation of Mobile Robot in the Environment

Urban, Daniel January 2018 (has links)
This diploma thesis deals with the problem of mobile robot localisation in the environment based on current 2D and 3D sensor data and previous records. Work is focused on detecting previously visited places by robot. The implemented system is suitable for loop detection, using the Gestalt 3D descriptors. The output of the system provides corresponding positions on which the robot was already located. The functionality of the system has been tested and evaluated on LiDAR data.
15

[en] USING DENSE 3D RECONSTRUCTION FOR VISUAL ODOMETRY BASED ON STRUCTURE FROM MOTION TECHNIQUES / [pt] UTILIZANDO RECONSTRUÇÃO 3D DENSA PARA ODOMETRIA VISUAL BASEADA EM TÉCNICAS DE STRUCTURE FROM MOTION

MARCELO DE MATTOS NASCIMENTO 08 April 2016 (has links)
[pt] Alvo de intenso estudo da visão computacional, a reconstrução densa 3D teve um importante marco com os primeiros sistemas em tempo real a alcançarem precisão milimétrica com uso de câmeras RGBD e GPUs. Entretanto estes métodos não são aplicáveis a dispositivos de menor poder computacional. Tendo a limitação de recursos computacionais como requisito, o objetivo deste trabalho é apresentar um método de odometria visual utilizando câmeras comuns e sem a necessidade de GPU, baseado em técnicas de Structure from Motion (SFM) com features esparsos, utilizando as informações de uma reconstrução densa. A Odometria visual é o processo de estimar a orientação e posição de um agente (um robô, por exemplo), a partir das imagens. Esta dissertação fornece uma comparação entre a precisão da odometria calculada pelo método proposto e pela reconstrução densa utilizando o Kinect Fusion. O resultado desta pesquisa é diretamente aplicável na área de realidade aumentada, tanto pelas informações da odometria que podem ser usadas para definir a posição de uma câmera, como pela reconstrução densa, que pode tratar aspectos como oclusão dos objetos virtuais com reais. / [en] Aim of intense research in the field computational vision, dense 3D reconstruction achieves an important landmark with first methods running in real time with millimetric precision, using RGBD cameras and GPUs. However these methods are not suitable for low computational resources. Having low computational resources as requirement, the goal of this work is to show a method of visual odometry using regular cameras, without using a GPU. The proposed method is based on technics of sparse Structure From Motion (SFM), using data provided by dense 3D reconstruction. Visual odometry is the process of estimating the position and orientation of an agent (a robot, for instance), based on images. This dissertation compares the proposed method with the odometry calculated by Kinect Fusion. Results of this research are applicable in augmented reality. Odometry provided by this work can be used to model a camera and the data from dense 3D reconstruction, can be used to handle occlusion between virtual and real objects.

Page generated in 0.0858 seconds