Spelling suggestions: "subject:"oekonophysik"" "subject:"elektrophysik""
1 |
Adaptive investment strategies for different scenariosBarrientos, Jesús Emeterio Navarro 20 September 2010 (has links)
Die folgende Arbeit befasst sich mit den Untersuchungen von Problemen der Optimierung von Ressourcen in Umgebungen mit unvorhersehbarem Verhalten, wo: (i) nicht alle Informationen verfügbar sind, und (ii) die Umgebung unbekannte zeitliche Veränderungen aufweist. Diese Dissertation ist folgendermaßen gegliedert: Teil I stellt das Investitionsmodell vor. Es wird sowohl eine analytische als auch eine numerische Analyse der Dynamik dieses Modells für feste Investitionsstrategien in verschiedenen zufälligen Umgebungen vorgestellt. In diesem Investitionsmodell hängt die Dynamik des Budgets des Agenten x(t) von der Zufälligkeit der exogenen Rendite r(t) ab, wofür verschiedene Annahmen diskutiert wurden. Die Heavy-tailed Verteilung des Budgets wurde numerisch untersucht und mit theoretischen Vorhersagen verglichen. In Teil II wurde ein Investitionsszenario mit stilisierten exogenen Renditen untersucht, das durch eine periodische Funktion mit verschiedenen Arten und Stärken von Rauschen charakterisiert ist. In diesem Szenario wurden unterschiedliche Strategien, Agenten-Verhalten und Agenten Fähigkeiten zur Vorhersage der zukünftigen r(t) untersucht. Hier wurden Null-intelligenz-Agenten, die über technischen Analysen verfügen, mit Agenten, die über genetischen Algorithmen verfügen, verglichen. Umfangreiche Ergebnisse von Computersimulationen wurden präsentiert, in denen nachgewiesen wurde, dass für exogene Renditen mit Periodizität: (i) das wagemutige das vorsichtige Verhalten überbietet, und (ii) die genetischen Algorithmen in der Lage sind, die optimalen Investitionsstrategien zu finden und deshalb die anderen Strategien überbieten. Obwohl der Schwerpunkt dieser Dissertation im Zusammenhang mit dem Gebiet der Informatik präsentiert wurde, können die hier vorgestellten Ergebnisse auch in Szenarien angewendet werden, in denen der Agent anderere Arten von Ressourcen steuern muss, wie z.B. Energie, Zeitverbrauch, erwartete Lebensdauer, etc. / The main goal of this PhD thesis is to investigate some of the problems related to optimization of resources in environments with unpredictable behavior where: (i) not all information is available and (ii) the environment presents unknown temporal changes. The investigations in this PhD thesis are divided in two parts: Part I presents the investment model and some analytical as well as numerical analysis of the dynamics of this model for fixed investment strategies in different random environments. In this investment model, the dynamics of the investor''s budget x(t) depend on the stochasticity of the exogenous return on investment r(t) for which different model assumptions are discussed. The fat-tail distribution of the budget is investigated numerically and compared with theoretical predictions. Part II investigates an investment scenario with stylized exogenous returns characterized by a periodic function with different types and levels of noise. In this scenario, different strategies, agent''s behaviors and agent''s capacities to predict the future r(t) are investigated. Here, ''zero-intelligent'' agents using technical analysis (such as moving least squares) are compared with agents using genetic algorithms to predict r(t). Results are presented for extensive computer simulations, which shows that for exogenous returns with periodicity: (i) the daring behavior outperforms the cautious behavior and (ii) the genetic algorithm is able to find the optimal investment strategy by itself, thus outperforming the other strategies considered. Finally, the investment model is extended to include the formation of common investment projects between agents. Although the main focus of this PhD thesis is more related to the area of computer science, the results presented here can be also applied to scenarios where the agent has to control other kinds of resources, such as energy, time consumption, expected life time, etc.
|
Page generated in 0.0302 seconds