• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Centrifugal compressor modeling development and validation for a turbocharger component matching system

Erickson, Christopher Erik January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Kirby S. Chapman / This thesis outlines the development of a centrifugal compressor model for the Turbocharger Component Matching System (TuCMS) software package that can be used to inexpensively analyze turbocharger performance. The TuCMS can also be used to match turbocharger components to integrate and optimize turbocharger-engine performance. The software system is being developed with the intent to reduce the time taken to experimentally match a turbocharger with an engine, a task that is key to engine emission reductions. The TuCMS uses one-dimensional thermo-fluid equations to analyze the compressor side of a turbocharger. For each compressor component, the program calculates the velocities, pressures, temperatures, pressure losses, work consumption, and efficiencies for a specified set of turbocharger geometry, atmospheric conditions, rotational speed, and fluid mass flow rate. The compressor includes established loss models found in the open literature. The TuCMS utilizes a component-based architecture to simplify model enhancements. The TuCMS can be used as a cost effective engineering tool for preliminary turbocharger testing during engine upgrades and modifications. In this thesis, the TuCMS compressor model was used as an analysis tool to further understand the Variable Geometry Turbocharger (VGT) experimental results. The VGT is a unique turbocharger that can change the diffuser vane angle over a wide range of positions. The change in diffuser vane angle results in optimal turbocharger performance at various operating conditions, and potentially increases the operating range. The purpose for the use of the TuCMS compressor model analysis is to identify the change in performance as the diffuser vane angles are adjusted. The TuCMS can ideally be used as a control program for the VGT to adjust the diffuser vane angles as the compressor load changes and insure the compressor is operating at the highest efficiency.
2

The Off-Design Modelling of a Combined-Cycle Power Plant

Naidu, Rushavya 26 November 2021 (has links)
The shift towards renewable energy has steered the focus of power plant operation towards flexibility and fast response which are more attainable through the use of combined-cycle power plants. These aspects are required to account for the fluctuation of the supply as well as the demand of power that is associated with renewable energy. Combined-cycle power plants consist of a gas turbine as the topping cycle, forming the core of the plant, and a Rankine cycle with a steam turbine as the bottoming cycle. A component called the Heat Recovery Steam Generator (HRSG) forms a connection point between the two cycles. It uses the heat released from the gas turbine to produce high pressure and temperature steam to be sent to the steam turbine. The objective of this project is to develop a model of a combined-cycle power plant in Flownex which can be solved in off-design conditions in order to compare it to plant data. The verification of this model will show that Flownex can be used to effectively and efficiently model a combined-cycle power plant. The process of development of the final Flownex model was achieved using various additional software. Initially, an analytical model was developed in Mathcad (software used for engineering calculations). This software provides a tool for understanding knowns, unknowns and what is being calculated in the system. Manual calculations of the Heat Recovery Steam Generator (HRSG) were done using heat balance equations. A temperature profile of the gas and water/steam in the HRSG was developed so that the duties of each component (economiser, evaporator, superheater) could be calculated. The overall conductance (UA) of each component was calculated in the design mode for the system to be evaluated in off-design mode. The development of an analytical model provided detailed understanding of the process of mathematical modelling used in commercial tools. Thereafter, a model was built in Virtual Plant, a thermodynamic modelling software for assessing plant performance. Virtual Plant uses plant design information and first engineering principles to predict plant performance. Finally, the Flownex model was designed. Flownex uses endpoint values (initial pressure and temperature and outgoing mass flow) and the UA of each component to calculate the characteristics of the flow at each intermediate point. For the single-, double-, and triple-pressure combined-cycle power plant systems, the analytical, Virtual Plant and Flownex models were compared. The results of all the models agreed closely with one another. The triple-pressure design and off-design Virtual Plant and Flownex models were also compared to plant data and it was concluded that Flownex was successful in modelling the design and off-design conditions of a combined-cycle power plant.
3

A NUMERICAL STUDY OF A TRANSONIC COMPRESSOR ROTOR AT LARGE TIP CLEARANCE

MERZ, LOUISE F. 17 April 2003 (has links)
No description available.
4

Low Cost Gas Turbine Off-Design Prediction Technique

January 2014 (has links)
abstract: This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis. / Dissertation/Thesis / GTCP85 Data / M.S. Mechanical Engineering 2014
5

A Performance Study of a Super-cruise Engine with Isothermal Combustion inside the Turbine

Chiu, Ya-Tien 05 January 2005 (has links)
Current thinking on the best propulsion system for a next-generation supersonic cruising (Mach 2 to Mach 4) aircraft is a mixed-flow turbofan engine with afterburner. This study investigates the performance increase of a turbofan engine through the use of isothermal combustion inside the high-pressure turbine (High-Pressure Turburner, HPTB) as an alternative form of thrust augmentation. A cycle analysis computer program is developed for accurate prediction of the engine performance and a supersonic transport cruising at Mach 2 at 60,000 ft is used to demonstrate the merit of using a turburner. When assuming no increase in turbine cooling flow is needed, the engine with HPTB could provide either 7.7% increase in cruise range or a 41% reduction in engine mass flow when compared to a traditional turbofan engine providing the sane thrust. If the required cooling flow in the turbine is almost doubled, the new engine with HPTB could still provide a 4.6% increase in range or 33% reduction in engine mass flow. In fact, the results also show that the degradation of engine performance because of increased cooling flow in a turburner is less than half of the degradation of engine performance because of increased cooling flow in a regular turbine. Therefore, a turbofan engine with HPTB will still easily out-perform a traditional turbofan when even more cooling than currently assumed is introduced. Closer examination of the simulation results in off-design regimes also shows that the new engine not only satisfies the thrust and efficiency requirement at the design cruise point, but also provides enough thrust and comparable or better efficiency in all other flight regimes such as transonic acceleration and take-off. Another finding is that the off-design bypass ratio of the new engine increases slower than a regular turbofan as the aircraft flies higher and faster. This behavior enables the new engine to maintain higher thrust over a larger flight envelope, crucial in developing faster air-breathing aircraft for the future. As a result, an engine with HPTB provides significant benefit both at the design point and in the off-design regimes, allowing smaller and more efficient engines for supersonic aircraft to be realized. / Ph. D.
6

Caractérisation de la performance aérodynamique d'un étage de turbine radiale à géométrie variable, en fonctionnement hors-adaptation / Characterisation of a variable geometry radial turbine stage aerodynamic performance, in case of off-design operation

Lauriau, Pierre-Thomas 01 February 2019 (has links)
La mutation technologique du transport en général et aéronautique en particulier, engagée au niveau européen, conduit à une évolution vers des avions plus économiques et moins consommateurs de carburant. Ceci impacte fortement les systèmes de conditionnement d’air par une électrification partielle ne nécessitant plus de prélèvement d’air sur les réacteurs. Il est alors nécessaire d’assurer une large plage de débit à travers la turbine, élément de la turbomachine constituant le cœur du « pack » de conditionnement d’air, tout en fournissant le maximum de puissance possible sur l’ensemble de la plage. L’étage turbine classique ne peut pas assurer la plage de débit spécifiée. Il est donc remplacé par un étage turbine à section d’injection variable. Cet étage turbine doit fonctionner depuis la phase de maintenance au sol (faible débit, fort taux de détente) jusqu'en phase de croisière (fort débit, faible taux de détente), tout en assurant également son rôle sur les autres phases de vol et multiples cas de panne. La problématique est alors de concevoir une turbine dont la géométrie varie en fonctionnement et qui présente de très bons rendements sur une large plage de débit. Il est ainsi primordial de comprendre au préalable la complexité des écoulements pour ce type de géométrie, et comment le dispositif assurant la variation de section va influencer la topologie de l’écoulement dans l’étage turbine. En particulier, la présence de jeux dans les parties statiques de l’étage introduit une perturbation tourbillonnaire en amont du rotor. L’impact de cette perturbation sur l’écoulement principal, son interaction avec les écoulements secondaires, doit être détaillé. L’influence de la localisation de cette perturbation, de son intensité, doit être analysée, dans un contexte rendu très complexe par la variabilité de la géométrie. La compréhension des phénomènes mis en jeu responsables de la variation des performances dans l’étage turbine, permettra de définir une stratégie de dimensionnement à adopter. L’amélioration des performances de la turbine permettra ainsi de limiter la puissance demandée sur le moteur électrique afin de limiter la masse embarquée et donc la consommation de carburant. La méthodologie retenue pour aborder cette problématique, se décline en quatre volets. Un premier volet bibliographique pour s’approprier les phénomènes physiques liés à l’écoulement dans une turbine à géométrie variable et faire un état de l’art des solutions techniques existantes de géométrie variable des distributeurs de turbines centripètes. Un volet numérique dont l’objectif sera double. D'une part, de proposer une méthodologie de calcul robuste de prévision des performances et, d’autre part, de discriminer différentes options de dimensionnement dont la pertinence doit être démontrée sur l’ensemble de sa plage d’opérabilité. Un volet expérimental représentant la part principale de la thèse, consistera à mettre en place un module spécifique pour réaliser et analyser les essais pour des points de spécification représentatifs du fonctionnement de la turbine sur avion. Cela permettra de fournir une base de données d’analyse et de validation, et de quantifier les effets d’intégration. Ces études numérique et expérimentale seront conduites conjointement, afin que l’analyse de l‘écoulement profite de la complémentarité des deux approches. La dernière étape de cette étude a pour but la restitution des résultats obtenus et le savoir-faire vers l’industrie tant du point de vue de la prédiction des performances que de la méthodologie de dimensionnement des turbines à géométrie variable. / The technological mutation of transport in general and aeronautics in particular, engaged to the European level, leads to an evolution of more economical and fuel-efficient aircrafts. It strongly impacts the environmental control systems by a partial electrification which does not need an air bleeding on the engine anymore. Then it is necessary to insure a large output range through the turbine, element of the turbomachine which forms the heart of the air conditioning « pack », while providing the maximum amount of possible power on the whole range. The classical turbine stage cannot insure the specified output range. Then it is replaced by a variable geometry radial inflow turbine. This turbine stage has to function from the maintenance phase on the ground (weak output, strong expansion ratio) to the en route phase (strong output, weak expansion ratio). It also has to guarantee its role during the others phases of flight and in case of multiple failures power. So the problematic is to design a turbine such that its geometry varies in operation and adapt itself to the changing operating with the best possible efficiency on the widest possible range. Thus it is primordial to understand beforehand the complexity of flows for this kind of geometry, and how the variable geometry device affects the flow topology in the turbine stage. In particular, the presence of clearances in the static parts of the stage creates a vortex perturbation upstream from the rotor. The impact of this perturbation on the main flow, its interaction with secondary flows, must be detailed. The influence of the perturbation localisation, its intensity, must be analysed, in the complex variable geometry context. The understanding of phenomenon involved and responsible for the downgrade of performance in the turbine stage, will allow defining a specific strategy of design. The improvement of performance for the turbine will enable to restrict the required power on the electrical engine for limiting the on board weight, and then the fuel consumption. The selected methodology to broach this problematic, is divided into four parts. Firstly, a bibliographic part in order to appropriate physics phenomenon related to the flow in a variable geometry turbine will be conducted, together with a state of art about the different existing technological solutions. Secondly, some numerical simulations will be set to propose a methodology of robust calculations for performance prediction and, to discriminate different design options. The third step consists in an experimental phase representing the main work of the thesis. It will consist in the definition of a specific module instrumented for tests representative of the turbine on aircraft functioning. It will provide a database for analysing the flow and validating the numerical simulations, and to quantify the effects of integration. These numerical and experimental studies will be led jointly, such that the general analysis takes advantage of complementarity of both approaches. The last step of this study aims at conditioning the results achieved and the know-how for industrial application.
7

Radial turbine expander design, modelling and testing for automotive organic Rankine cycle waste heat recovery

Alshammari, Fuhaid January 2018 (has links)
Since the late 19th century, the average temperature on Earth has risen by approximately 1.1 °C because of the increased carbon dioxide (CO2) and other man-made emissions to the atmosphere. The transportation sector is responsible for approximately 33% of the global CO2 emissions and 14% of the overall greenhouse gas emissions. Therefore, increasingly stringent regulations in the European Union require CO2 emissions to be lower than 95 gCO₂/km by 2020. In this regard, improvements in internal combustion engines (ICEs)must be achieved in terms of fuel consumption and CO2 emissions. Given that only up to 35% of fuel energy is converted into mechanical power, the wasted energy can be reused through waste heat recovery (WHR) technologies. Consequently, organic Rankine cycle (ORC) has received significant attention as a WHR technology because of its ability to recover wasted heat in low- to medium-heat sources. The Expansion machine is the key component in ORC systems, and its performance has a direct and significant impact on overall cycle efficiency. However, the thermal efficiencies of ORC systems are typically low due to low working temperatures. Moreover, supersonic conditions at the high pressure ratios are usually encountered in the expander due to the thermal properties of the working fluids selected which are different to water. Therefore, this thesis aims to design an efficient radial-inflow turbine to avoid further efficiency reductions in the overall system. To fulfil this aim, a novel design and optimisation methodology was developed. A design of experiments technique was incorporated in the methodology toexplorethe effects of input parameters on turbine performance and overall size. Importantly, performance prediction modelling by means of 1D mean-line modelling was employed in the proposed methodology to examine the performance of ORC turbines at constant geometries. The proposed methodology was validated by three methods: computational fluid dynamics analysis, experimental work available in the literature, and experimental work in the current project. Owing to the lack of actual experimental works in ORC-ICE applications, a test rig was built around a heavy-duty diesel engine at Brunel University London and tested at partial load conditions due to the requirement for a realistic off-high representation of the performance of the system rather than its best (design) point, while taking into account the limitation of the engine dynamometer employed. Results of the design methodology developed for this projectpresented an efficient single-stage high-pressure ratio radial-inflow turbine with a total to static efficiency of 74.4% and an output power of 13.6 kW.Experimental results showed that the ORC system had a thermal efficiency of 4.3%, and the brake-specific fuel consumption of the engine was reduced by 3%. The novel meanlineoff designcode (MOC) was validated with the experimental works from three turbines. In comparison with the experimental results conducted at Brunel University London, the predicted and measured results were in good agreement with a maximum deviation of 2.8%.
8

Aerothermodynamic Modeling And Simulation Of Gas Turbines For Transient Operating Conditions

Kocer, Gulru 01 June 2008 (has links) (PDF)
In this thesis, development of a generic transient aero-thermal gas turbine model is presented. A simulation code, gtSIM is developed based on an algorithm which is composed of a set of differential equations and a set of non-linear algebraic equations representing each gas turbine engine component. These equations are the governing equations which represents the aero-thermodynamic process of the each engine component and they are solved according to a specific solving sequence which is defined in the simulation code algorithm. At each time step, ordinary differential equations are integrated by a first-order Euler scheme and a set of algebraic equations are solved by forward substitution. The numerical solution process lasts until the end of pre-defined simulation time. The objective of the work is to simulate the critical transient scenarios for different types of gas turbine engines at off-design conditions. Different critical transient scenarios are simulated for two di&reg / erent types of gas turbine engine. As a first simulation, a sample critical transient scenario is simulated for a small turbojet engine. As a second simulation, a hot gas ingestion scenario is simulated for a turbo shaft engine. A simple proportional control algorithm is also incorporated into the simulation code, which acts as a simple speed governor in turboshaft simulations. For both cases, the responses of relevant engine parameters are plotted and results are presented. Simulation results show that the code has the potential to correctly capture the transient response of a gas turbine engine under different operating conditions. The code can also be used for developing engine control algorithms as well as health monitoring systems and it can be integrated to various flight vehicle dynamic simulation codes.
9

Identification of emergent off-nominal operational requirements during conceptual architecting of the more electric aircraft

Armstrong, Michael James 09 November 2011 (has links)
With the current increased emphasis on the development of energy optimized vehicle systems architectures during the early phases in aircraft conceptual design, accurate predictions of these off-nominal requirements are needed to justify architecture concept selection. A process was developed for capturing architecture specific performance degradation strategies and optimally imposing their associated requirements. This process is enabled by analog extensions to traditional safety design and assessment tools and consists of six phases: Continuous Functional Hazard Assessment, Architecture Definition, Load Shedding Optimization, Analog System Safety Assessment, Architecture Optimization, and Architecture Augmentation. Systematic off-nominal analysis of requirements was performed for dissimilar architecture concepts. It was shown that traditional discrete application of safety and reliability requirements have adverse effects on the prediction of requirements. This design bias was illustrated by cumulative unit importance metrics. Low fidelity representations of the loss/hazard relationship place undue importance on some units and yield under or over-predictions of system performance.
10

Numerical study of pump-turbine instabilities : pumping mode off-design conditions / Étude numérique d'écoulements instables dans une turbine-pompe : analyses des régimes "off-design" en mode pompe

Ješe, Uroš 13 November 2015 (has links)
Actuellement, la flexibilité et le stockage de l'énergie sont parmi les principaux défis de l'industrie de l'énergie. Les stations de transfert d'énergie par pompage (STEP), en utilisant des turbines-pompes réversibles, comptent parmi les solutions les plus rentables pour répondre à ces besoins. Pour assurer un réglage rapide du réseau électrique, les turbines-pompes sont sujettes à de rapides changements entre modes pompage et turbinage. Elles sont souvent exposées à un fonctionnement prolongé dans des conditions hors nominal. Pour assurer la stabilité du réseau, la zone d'exploitation continue de turbines-pompes réversibles doit être libre de toute instabilité hydraulique. Deux sources principales d'instabilités en mode pompage peuvent limiter la plage de fonctionnement continu. Il s'agit de la présence de cavitation et de décollement tournant, tous deux survenant à charge partielle. La cavitation peut conduire à des vibrations, des pertes de performance et parfois même à l'érosion de la turbine-pompe. En outre, en raison de décollements tournants (apparition et décomposition périodique de zones de recirculation dans les régions du distributeur), la machine peut être exposée à un changement incontrôlable entre les points de fonctionnement, avec une modification de charge et une baisse significative des performances. Les deux phénomènes sont très complexes, tri-dimensionnels et délicats à étudier. Surtout le phénomène de décollement tournant dans les turbines-pompes est peu abordé dans la littérature. Le premier objectif de l'étude du doctorat présenté a été d'utiliser un code numérique, testé au laboratoire, et de développer une méthodologie de calcul pour permettre la prévision des phénomènes à charge partielle. L'étude a été faite sur une géométrie à échelle réduite d'une turbine-pompe de haute chute. Des calculs numériques ont été effectués en utilisant le code FINE/Turbo avec le modèle de cavitation barotrope qui a été développé au laboratoire. L'analyse des écoulements cavitants a été faite pour des débits et de niveaux de cavitation différents. Les principales analyses portent sur des valeurs naissantes de cavitation, des courbes de chute et sur le prédiction des formes de cavitation pour différents débits et valeurs de NPSH. Une attention particulière a été portée sur l'interaction entre les formes de cavitation à l'entrée de la roue et la baisse de performance (zone de feston), causée par le décollement tournant qui apparaît dans la région du distributeur. Les résultats numériques ont montré un bon accord avec les données expérimentales disponibles. La deuxième partie de la thèse a concerné la prédiction et l'analyse de décollements tournants. Des simulations ont été utilisées pour prédire les régions d'exploitation stables et instables de la machine. La méthodologie mentionnée pourrait fournir des résultats globaux précis pour différents points de fonctionnement avec un faible coût de calcul. Afin d'obtenir des informations détaillées sur les écoulements instables, des simulations instationnaires plus précises ont été réalisées. L'analyse locale des écoulements a permis la description des mécanismes gouvernant le phénomène de décollement tournant. Les analyses permettent l'étude du nombre, de l'intensité et des fréquences de rotation des cellules tournants. En outre, les calculs instationnaires donnent une très bonne prédiction de la performance de la turbine-pompe. L'approche proposée est fiable, robuste et précise. La méthodologie de calcul proposée peut être utilisée sur plusieurs géométries de turbine-pompe (ou pompe centrifuge), pour une large gamme de débits et de géométries de directrices. Les simulations proposées peuvent être utilisées à l'échelle industrielle pour étudier les effets de géométrie, d'angles d'ouverture de directrices ou de l'influence du jeu entre la roue et le distributeur afin de réduire ou même éliminer les effets négatifs des décollements tournants. / Flexibility and energy storage seem to be the main challenges of the energy industry at the present time. Pumped Storage Power Plants (PSP), using reversible pump-turbines, are among the most cost-efficient solutions to answer these needs. To provide a rapid adjustment to the electrical grid, pump-turbines are subjects of quick switching between pumping and generating modes and to extended operation under off-design conditions. To maintain the stability of the grid, the continuous operating area of reversible pump-turbines must be free of hydraulic instabilities. Two main sources of pumping mode instabilities are the presence of the cavitation and the rotating stall, both occurring at the part load. Presence of cavitation can lead into vibrations, loss of performance and sometimes erosion. Moreover, due to rotating stall that can be observed as periodic occurrence and decay of recirculation zones in the distributor regions, the machine can be exposed to uncontrollable shift between the operating points with the significant discharge modification and the drop of the efficiency. Both phenomena are very complex, three-dimensional and demanding for the investigation. Especially rotating stall in the pump-turbines is poorly addressed in the literature. First objective of the presented PhD study has been to develop the cost-efficient numerical methodology in order to enable the accurate prediction and analysis of the off-design part load phenomena. The investigations have been made on the reduce-scaled high head pump-turbine design (nq = 27rpm) provided by Alstom Hydro. Steady and unsteady numerical calculations have been performed using code FINE/Turbo with barotropic cavitation model implemented and developed before in the laboratory. Some of the numerical results have been compared to the experimental data. Cavitating flow analysis has been made for various flow rates and wide range of cavitation levels. Flow investigation has been focused on the cavitation influence on the flow behavior and on the performance of the machine. Main analyses include incipient cavitation values, head drop curves and cavitation forms prediction for wide ranges of flow rates and NPSH values. Special attention has been put on the interaction between cavitation forms and the performance drop (hump zone) caused by the rotating stall. Cavitation results showed good agreement with the provided experimental data. Second part of the thesis has been focused on the prediction and analysis of the rotating stall flow patterns. Computationally fast steady simulations has been presented and used to predict stable and unstable operating regions. The analyses have been done on 4 different guide vanes openings and 2 guide vanes geometries. In order to get detailed information about the unsteady flow patterns related to the rotating stall, more exact unsteady simulations have been performed. Local flow study has been done to describe in details the governing mechanisms of the rotating stall. The analyses enable the investigations of the rotating stall frequencies, number of stalled cells and the intensity of the rotating stall. Moreover, the unsteady calculations give very good prediction of the pump-turbine performance for both, stable and unstable operating regions. Numerical results give very good qualitative and quantitative agreement with the available experimental data. The approach appears to be very reliable, robust and precise. Even though the numerical results (rotating stall frequencies, number of cells...) on the actual geometry should be confirmed experimentally, author believes that the methodology could be used on any other pump-turbine (or centrifugal pump) geometry. Moreover, the simulations can be used industrially to study the effects of the guide vanes geometries, guide vanes opening angles and influence of the gap between the impeller and the distributor in order to reduce or even eliminate the negative effects of the rotating stall.

Page generated in 0.0709 seconds