• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

POPR: Probabilistic Offline Policy Ranking with Expert Data

Schwantes, Trevor F. 26 April 2023 (has links) (PDF)
While existing off-policy evaluation (OPE) methods typically estimate the value of a policy, in real-world applications, OPE is often used to compare and rank policies before deploying them in the real world. This is also known as the offline policy ranking problem. While one can rank the policies based on point estimates from OPE, it is beneficial to estimate the full distribution of outcomes for policy ranking and selection. This paper introduces Probabilistic Offline Policy Ranking that works with expert trajectories. It introduces rigorous statistical inference capabilities to offline evaluation, which facilitates probabilistic comparisons of candidate policies before they are deployed. We empirically demonstrate that POPR is effective for evaluating RL policies across various environments.
2

Faster Gradient-TD Algorithms

Hackman, Leah M Unknown Date
No description available.
3

Experiments in off-policy reinforcement learning with the GQ(lambda) algorithm

Delp, Michael Unknown Date
No description available.
4

Experiments in off-policy reinforcement learning with the GQ(lambda) algorithm

Delp, Michael 06 1900 (has links)
Off-policy reinforcement learning is useful in many contexts. Maei, Sutton, Szepesvari, and others, have recently introduced a new class of algorithms, the most advanced of which is GQ(lambda), for off-policy reinforcement learning. These algorithms are the first stable methods for general off-policy learning whose computational complexity scales linearly with the number of parameters, thereby making them potentially applicable to large applications involving function approximation. Despite these promising theoretical properties, these algorithms have received no significant empirical test of their effectiveness in off-policy settings prior to the current work. Here, GQ(lambda) is applied to a variety of prediction and control domains, including on a mobile robot, where it is able to learn multiple optimal policies in parallel from random actions. Overall, we find GQ(lambda) to be a promising algorithm for use with large real-world continuous learning tasks. We believe it could be the base algorithm of an autonomous sensorimotor robot.
5

Hyperparameter Tuning for Reinforcement Learning with Bandits and Off-Policy Sampling

Hauser, Kristen 21 June 2021 (has links)
No description available.
6

Bayesian Off-policy Sim-to-Real Transfer for Antenna Tilt Optimization

Larsson Forsberg, Albin January 2021 (has links)
Choosing the correct angle of electrical tilt in a radio base station is essential when optimizing for coverage and capacity. A reinforcement learning agent can be trained to make this choice. If the training of the agent in the real world is restricted or even impossible, alternative methods can be used. Training in simulation combined with an approximation of the real world is one option that comes with a set of challenges associated with the reality gap. In this thesis, a method based on Bayesian optimization is implemented to tune the environment in which domain randomization is performed to improve the quality of the simulation training. The results show that using Bayesian optimization to find a good subset of parameters works even when access to the real world is constrained. Two off- policy estimators based on inverse propensity scoring and direct method evaluation in combination with an offline dataset of previously collected cell traces were tested. The method manages to find an isolated subspace of the whole domain that optimizes the randomization while still giving good performance in the target domain. / Rätt val av elektrisk antennvinkel för en radiobasstation är avgörande när täckning och kapacitetsoptimering (eng. coverage and capacity optimization) görs för en förstärkningsinlärningsagent. Om träning av agenten i verkligheten är besvärlig eller till och med omöjlig att genomföra kan olika alternativa metoder användas. Simuleringsträning kombinerad med en skattningsmodell av verkligheten är ett alternativ som har olika utmaningar kopplade till klyftan mellan simulering och verkligheten (eng. reality gap). I denna avhandling implementeras en lösning baserad på Bayesiansk Optimering med syftet att anpassa miljön som domänrandomisering sker i för att förbättra kvaliteten på simuleringsträningen. Resultatet visar att Bayesiansk Optimering kan användas för att hitta ett urval av fungerande parametrar även när tillgången till den faktiska verkligheten är begränsad. Två skattningsmodeller baserade på invers propensitetsviktning och direktmetodutvärdering i kombination med ett tidigare insamlat dataset av nätverksdata testades. Den tillämpade metoden lyckas hitta ett isolerat delrum av parameterrymden som optimerar randomiseringen samtidigt som prestationen i verkligheten hålls på en god nivå.
7

Large state spaces and self-supervision in reinforcement learning

Touati, Ahmed 08 1900 (has links)
L'apprentissage par renforcement (RL) est un paradigme d'apprentissage orienté agent qui s'intéresse à l'apprentissage en interagissant avec un environnement incertain. Combiné à des réseaux de neurones profonds comme approximateur de fonction, l'apprentissage par renforcement profond (Deep RL) nous a permis récemment de nous attaquer à des tâches très complexes et de permettre à des agents artificiels de maîtriser des jeux classiques comme le Go, de jouer à des jeux vidéo à partir de pixels et de résoudre des tâches de contrôle robotique. Toutefois, un examen plus approfondi de ces remarquables succès empiriques révèle certaines limites fondamentales. Tout d'abord, il a été difficile de combiner les caractéristiques souhaitables des algorithmes RL, telles que l'apprentissage hors politique et en plusieurs étapes, et l'approximation de fonctions, de manière à obtenir des algorithmes stables et efficaces dans de grands espaces d'états. De plus, les algorithmes RL profonds ont tendance à être très inefficaces en raison des stratégies d'exploration-exploitation rudimentaires que ces approches emploient. Enfin, ils nécessitent une énorme quantité de données supervisées et finissent par produire un agent étroit capable de résoudre uniquement la tâche sur laquelle il est entrainé. Dans cette thèse, nous proposons de nouvelles solutions aux problèmes de l'apprentissage hors politique et du dilemme exploration-exploitation dans les grands espaces d'états, ainsi que de l'auto-supervision dans la RL. En ce qui concerne l'apprentissage hors politique, nous apportons deux contributions. Tout d'abord, pour le problème de l'évaluation des politiques, nous montrons que la combinaison des méthodes populaires d'apprentissage hors politique et à plusieurs étapes avec une paramétrisation linéaire de la fonction de valeur pourrait conduire à une instabilité indésirable, et nous dérivons une variante de ces méthodes dont la convergence est prouvée. Deuxièmement, pour l'optimisation des politiques, nous proposons de stabiliser l'étape d'amélioration des politiques par une régularisation de divergence hors politique qui contraint les distributions stationnaires d'états induites par des politiques consécutives à être proches les unes des autres. Ensuite, nous étudions l'apprentissage en ligne dans de grands espaces d'états et nous nous concentrons sur deux hypothèses structurelles pour rendre le problème traitable : les environnements lisses et linéaires. Pour les environnements lisses, nous proposons un algorithme en ligne efficace qui apprend activement un partitionnement adaptatif de l'espace commun en zoomant sur les régions les plus prometteuses et fréquemment visitées. Pour les environnements linéaires, nous étudions un cadre plus réaliste, où l'environnement peut maintenant évoluer dynamiquement et même de façon antagoniste au fil du temps, mais le changement total est toujours limité. Pour traiter ce cadre, nous proposons un algorithme en ligne efficace basé sur l'itération de valeur des moindres carrés pondérés. Il utilise des poids exponentiels pour oublier doucement les données qui sont loin dans le passé, ce qui pousse l'agent à continuer à explorer pour découvrir les changements. Enfin, au-delà du cadre classique du RL, nous considérons un agent qui interagit avec son environnement sans signal de récompense. Nous proposons d'apprendre une paire de représentations qui mettent en correspondance les paires état-action avec un certain espace latent. Pendant la phase non supervisée, ces représentations sont entraînées en utilisant des interactions sans récompense pour encoder les relations à longue portée entre les états et les actions, via une carte d'occupation prédictive. Au moment du test, lorsqu'une fonction de récompense est révélée, nous montrons que la politique optimale pour cette récompense est directement obtenue à partir de ces représentations, sans aucune planification. Il s'agit d'une étape vers la construction d'agents entièrement contrôlables. Un thème commun de la thèse est la conception d'algorithmes RL prouvables et généralisables. Dans la première et la deuxième partie, nous traitons de la généralisation dans les grands espaces d'états, soit par approximation de fonctions linéaires, soit par agrégation d'états. Dans la dernière partie, nous nous concentrons sur la généralisation sur les fonctions de récompense et nous proposons un cadre d'apprentissage non-supervisé de représentation qui est capable d'optimiser toutes les fonctions de récompense. / Reinforcement Learning (RL) is an agent-oriented learning paradigm concerned with learning by interacting with an uncertain environment. Combined with deep neural networks as function approximators, deep reinforcement learning (Deep RL) allowed recently to tackle highly complex tasks and enable artificial agents to master classic games like Go, play video games from pixels, and solve robotic control tasks. However, a closer look at these remarkable empirical successes reveals some fundamental limitations. First, it has been challenging to combine desirable features of RL algorithms, such as off-policy and multi-step learning with function approximation in a way that leads to both stable and efficient algorithms in large state spaces. Moreover, Deep RL algorithms tend to be very sample inefficient due to the rudimentary exploration-exploitation strategies these approaches employ. Finally, they require an enormous amount of supervised data and end up producing a narrow agent able to solve only the task that it was trained on. In this thesis, we propose novel solutions to the problems of off-policy learning and exploration-exploitation dilemma in large state spaces, as well as self-supervision in RL. On the topic of off-policy learning, we provide two contributions. First, for the problem of policy evaluation, we show that combining popular off-policy and multi-step learning methods with linear value function parameterization could lead to undesirable instability, and we derive a provably convergent variant of these methods. Second, for policy optimization, we propose to stabilize the policy improvement step through an off-policy divergence regularization that constrains the discounted state-action visitation induced by consecutive policies to be close to one another. Next, we study online learning in large state spaces and we focus on two structural assumptions to make the problem tractable: smooth and linear environments. For smooth environments, we propose an efficient online algorithm that actively learns an adaptive partitioning of the joint space by zooming in on more promising and frequently visited regions. For linear environments, we study a more realistic setting, where the environment is now allowed to evolve dynamically and even adversarially over time, but the total change is still bounded. To address this setting, we propose an efficient online algorithm based on weighted least squares value iteration. It uses exponential weights to smoothly forget data that are far in the past, which drives the agent to keep exploring to discover changes. Finally, beyond the classical RL setting, we consider an agent interacting with its environments without a reward signal. We propose to learn a pair of representations that map state-action pairs to some latent space. During the unsupervised phase, these representations are trained using reward-free interactions to encode long-range relationships between states and actions, via a predictive occupancy map. At test time, once a reward function is revealed, we show that the optimal policy for that reward is directly obtained from these representations, with no planning. This is a step towards building fully controllable agents. A common theme in the thesis is the design of provable RL algorithms that generalize. In the first and the second part, we deal with generalization in large state spaces either by linear function approximation or state aggregation. In the last part, we focus on generalization over reward functions and we propose a task-agnostic representation learning framework that is provably able to solve all reward functions.

Page generated in 0.0408 seconds