• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Model analysis of a mooring system for an ocean current turbine testing platform

Unknown Date (has links)
In response to Florida's growing energy needs and drive to develop renewable power, Florida Atlantic Universitys Center for Ocean Energy Technology (COET) plans to moor a 20 kW test turbine in the Florida Current. No permanent mooring systems for deepwater hydrokinetic turbines have been constructed and deployed, therefore little if anything is known about the performance of these moorings. To investigate this proposed mooring system, a numeric model is developed and then used to predict the static and dynamic behavior of the mooring system and attachments. The model has been created in OrcaFlex and includes two surface buoys and an operating turbine. Anchor chain at the end of the mooring line develops a catenary, providing compliance. Wind, wave, and current models are used to represent the environmental conditions the system is expected to experience and model the dynamic effects on the system. The model is then used to analyze various components of the system. The results identify that a mooring attachment point 1.25 m forward of the center of gravity on the mooring buoy is ideal, and that the OCDP and turbine tether lengths should be no shorter than 25 and 44 m, respectively. Analysis performed for the full system identify that the addition of the floats decreases the tension at the MTB attachment location by 26.5 to 29.5% for minimum current, and 0.10 to 0.31% for maximum current conditions. / by Allison Rose Cribbs. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.

Page generated in 0.3229 seconds