• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel tools for targeting PCBs and PCB metabolites using ssDNA aptamers

Salomon Beltran, Marisa Genevive 01 December 2016 (has links)
Polychlorinated biphenyls (PCBs) are persistent environmental chemicals. Mono-hydroxylated polychlorinated biphenyls (OH-PCBs) are PCB metabolites found commonly in human blood, environmental water and sediment samples. Detection of small amounts of PCBs and their OH-PCB metabolites in biological matrices from epidemiological and laboratory studies remains a challenge. The application of aptamers is studied as a means to identify and quantify PCBs and OH-PCBs. Aptamers are single stranded short oligonucleotides that arrange into unique shape of three-dimensional structures when binding to their target. Like antibodies they have high affinity and specificity for their specific target. The hypothesis is that aptamers can identify PCBs and PCB metabolites in environmental and biological samples. To test this hypothesis, three different OH-PCBs, 4’-OH-PCB3, 4-OH-PCB72 and 2-OH-PCB106 along with 4-OH-biphenyl as a control, were covalently attached to beads with carboxylic acid groups on their surface. Several methods were explored to characterize covalent binding of OH-PCBs to the beads: FTIR-spectroscopy, Dynamic Light Scattering (DLS) and Zeta-Potential (ZP) measurements. The beads were then used in in vitro assays to test binding of two different aptamers specific to OH-PCBs. In this study, these aptamers were tested for the ability to distinguish structurally different OH-PCB congeners and other environmental pollutants. In future studies, aptamers can be selected for a PCB metabolite of interest, 4’-OH-PCB3, via a modified form of Systemic Evolution of Ligands by Exponential Enrichment (SELEX). Single stranded DNA (ssDNA) aptamers generated will be applied as a biosensor for the detection and quantification of traces of 4’-OH-PCB3.
2

Polychlorinated biphenyls (PCBs) and hydroxylated PCBs in serum from U.S. children and their mothers and in sediment from a Lake Michigan waterway

Marek, Rachel Frances 01 July 2013 (has links)
In this dissertation I compare concentrations of polychlorinated biphenyls (PCBs) and hydroxylated PCBs (OH-PCB) in serum of children and their mothers from urban and rural U.S. communities, determine the variability of these concentrations from year to year, and report the detection of OH-PCBs in sediment from a Lake Michigan waterway and original commercial Aroclors. I developed extraction and analytical methods for the analysis of PCBs and OH-PCBs in 377 human serum samples and 20 sediment samples. I also developed a quality assurance protocol and analyzed more than 300 quality control samples for the purpose of generating an accurate, reproducible, representative, and precise data set. I found that concentrations of PCBs were much higher in mothers than their children, and concentrations of OH-PCBs were slightly higher in mothers than their children. Children were enriched in lower molecular weight PCBs indicating the importance of environmental exposure to their blood concentrations. I also determined that concentrations were similar between the urban and rural residents. These concentrations were similar to concentrations reported in the U.S. general population and other populations without high dietary PCB intake. In East Chicago and Columbus Junction participants, concentrations of OH-PCBs demonstrated a strong positive relationship with PCBs. Variability in PCB and OH-PCB concentration from the first year to the second in most participants exceeded the estimated analytical variability. Observed variability could be due to exposure differences, physiological changes such as metabolism and weight, or a combination. I also discovered the presence of OH-PCBs in the sediment from the Indiana Harbor and Ship Canal (IHSC), a Lake Michigan Waterway. In a first-approach, evidence from analysis of the correlations between OH-PCBs and PCBs in the same sediment is consistent with limited biotic activity. I also report OH-PCBs as contaminants in original commercial Aroclors, and OH-PCB profile similarities between the Aroclors and sediment suggest that Aroclors are the major source of OH-PCB contamination in IHSC. This is a significant finding because OH-PCB contamination of sediment exists anywhere that PCB contamination from Aroclors is present.
3

AEROBIC BACTERIAL DEGRADATION OF HYDROXYLATED PCBs: POTENTIAL IMPLICATIONS FOR NATURAL ATTENUATION OF PCBs

Afsarmanesh Tehrani, Rouzbeh January 2013 (has links)
Polychlorinated biphenyls (PCBs) are toxic and persistent chemicals that have been largely dispersed into the environment. The biological and abiotic transformations of PCBs often generate hydroxylated derivatives, which have been detected in a variety of environmental samples, including animal tissues and feces, water, and sediments. Because of their toxicity and widespread dispersion in the environment, hydroxylated PCBs (OH-PCBs) are today increasingly considered as a new class of environmental contaminants. Although PCBs are known to be susceptible to microbial degradation under both aerobic and anaerobic conditions, bacterial degradation of OH-PCBs has received little attention. The overall objective of this study is therefore to evaluate the transformation of mono-hydroxylated PCBs by the well characterized aerobic PCB-degrading bacterium, Burkholderia xenovorans LB400. In order to achieve our overall objective, a series of model mono-hydroxylated PCBs have been selected and they are used to determine the toxicity of hydroxylated congeners toward the bacterium B. xenovorans LB400. The biodegradation kinetics and metabolic pathways of the selected OH-PCBs by B. xenovorans LB400 are then characterized using GC/MS. To understand further the molecular basis of the metabolism of OH-PCBs by B. xenovorans LB400, gene expression analyses are conducted using reverse-transcription real-time (quantitative) polymerase chain reaction (RT-qPCR) and microarray technology. More formally, the specific aims of the proposed research are stated as follows: (1) To evaluate the toxicity of selected mono-hydroxylated derivatives of lesser-chlorinated PCBs toward the bacterium B. xenovorans LB400. (2) To assess the degradation of the selected OH-PCBs by B. xenovorans LB400. (3) To gain further understanding of the molecular bases of the metabolism of the selected OH-PCBs by B. xenovorans LB400. Three hydroxylated derivatives of 4-chlorobiphenyl and 2,5-dichlorobiphenyl, including 2'-hydroxy-, 3'-hydroxy-, and 4'-hydroxy- congeners, were significantly transformed by Burkholderia xenovorans LB400 when the bacterium was growing on biphenyl (biphenyl pathway-inducing conditions). On the contrary, only 2'-OH-4-chlorobiphenyl and 2'-OH-2,5-dichlorobiphenyl were transformed by the bacterium growing on succinate (conditions non-inductive of the biphenyl pathway). Gene expression analyses showed that only exposure to 2'-OH-4-chlorobiphenyl and 2'-OH-2,5-dichlorobiphneyl resulted in induction of key genes of the biphenyl pathway, when cells grown on succinate. These observations suggest that 2'OH-PCBs were capable of inducing the genes of biphenyl pathway. These results provide the first evidence that bacteria are able to cometabolize PCB derivatives hydroxylated on the non-chlorinated ring. Genome-wide transcriptional analyses using microarrays showed that 134 genes were differentially expressed in cells exposed to biphenyl, 2,5-dichlorobiphenyl, and 2'-OH-2,5-dichlorobiphneyl as compared to non-exposed cells. A significant proportion of differentially expressed genes were simultaneously expressed or down regulated by exposure to the three target compounds i.e., biphenyl, 2,5-DCB, and 2'-OH-2,5-DCB, which suggests that these structurally similar compounds induce similar transcriptional response of B.xenovorans LB400. Results of this study may have important implications for the natural attenuation of PCBs and fate of OH-PCBs in the environment. The recalcitrance to biodegradation and the high toxicity of some OH-PCBs may provide a partial explanation for the persistence of PCBs in the environment. / Civil Engineering

Page generated in 0.0283 seconds