Spelling suggestions: "subject:"lil bands tailings"" "subject:"lil bands failings""
11 |
The mobility of petroleum hydrocarbons in Athabasca oil sands tailings2013 September 1900 (has links)
Several oil sands tailings from Suncor Energy Inc. were analysed with respect to the mobility and solubility of the petroleum hydrocarbon (PHC) contaminants. At sites where oil sands tailings materials have been disposed of and are covered with a growing medium, the PHCs from
the tailings may slowly migrate into the reclamation cover, increasing their availability to the plants in the cover system, which could be detrimental to the development and establishment of
the plant cover system.
This study characterized the PHC content of the tailings and quantified the desorption and diffusion coefficients for F2 and F3 fraction PHCs. All tailings materials collected from Suncor
were characterized for initial PHC content. Desorption coefficients were experimentally determined using batch tests for 9 tailings materials (MFT, LG MFT, PT MFT, Tailings Sand, P4 UB Surface, P4 UB Auger, 2:1 CT, 4:1 CT and 6:1 CT). The experimental results from the
batch tests were fitted to a Langmuir hyperbolic isotherm model. Diffusion coefficients were determined by fitting the experimental results from a radial diffusion 1-dimensional experiment to a Finite Difference Model. Diffusion coefficients for F2 and F3 Fraction PHCs were developed for 7 tailings materials (MFT, LG MFT, PT MFT, Tailings Sand, 2:1 CT, 4:1 CT and
6:1 CT). The diffusion coefficients (D*) and the Langmuir desorption constants ( and )
developed from these experiments are included in Table A.1.
The desorption coefficients resulting from this study are similar to those reported for the desorption of asphaltene, which is one of the components in oil sands tailings. The Langmuir isotherm model was found to be the best fit for the experimental desorption data; the Langmuir isotherm model is commonly used in sorption isotherms of organic chemicals.
The results of the radial diffusion experiments agree with diffusion rates found by other researchers in similar porous media. More research may be needed to verify both of these preliminary results for the desorptive and diffusive transport of F2 and F3 PHC fractions in tailings. Tailings composition will continue to change as new technologies for fines settling and bitumen extraction are developed. The diffusion of PHCs from these new materials will need to be examined as it is probable that these changes will affect the transport and mobility of the contaminants.
|
12 |
Methanogenesis in oil sands tailings: an analysis of the microbial community involved and its effects on tailings densificationLi, Carmen Unknown Date
No description available.
|
13 |
Effect of Laminar Shear on the Aggregate Structure of Flocculant-dosed Kaolinite SlurriesVaezi Ghobaeiyeh, Farid Unknown Date
No description available.
|
14 |
Methanogenesis in oil sands tailings: an analysis of the microbial community involved and its effects on tailings densificationLi, Carmen 06 1900 (has links)
Densification of tailings slurries to mature fine tailings (MFT) is important in the oil sands industry for tailings inventory reduction, pore water recovery and tailings reclamation. The cause of methane release from the tailings pond of Shell Albian Sands (Albian) and the effects this process has on densification of Albian tailings was investigated. Citrate, added to tailings with polyacrylamide and hydrocarbon-diluent, was identified as the methanogenic substrate. Bacterial and Archaeal 16S rRNA gene sequences in Albian MFT were dominated by matches to Rhodoferax, some Clostridia and sulfate-reducing bacteria, and acetoclastic methanogens. Citrate-, diluent-, and polyacrylamide-amendments to Albian MFT did not cause a microbial shift over a 10-month laboratory incubation period. A potential pathway for microbial methane production in Albian MFT is proposed. Methane production and release from citrate-amended Albian MFT correlated to accelerated densification. Though diluent and polyacrylamide did not affect methanogenesis, they potentially affect gas bubble formation and release. / Microbiology and Biotechnology
|
15 |
Bioremediation of naphthenic acids in a circulating packed bed bioreactorHuang, Li Yang 18 August 2011
Naphthenic acids (NAs) comprise a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids. NAs are present in wastewaters at petroleum refineries and in the process waters of oil sands extraction plants where they are primarily retained in large tailing ponds in the Athabasca region of Northern Alberta. The toxicity of these waters, primarily caused by NAs, dictates the need for their treatment.Bioremediation is considered as one of the most cost-effective approaches for the treatment of these wastewaters. Ex-situ bioremediation conducted in a bioreactor optimizes the microbial growth and activity by controlling environmental conditions resulting in efficient conversion of the contaminants to less harmful compounds. In this work, a circulating packed bed bioreactor (CPBB), with improved mixing, mass transfer and biomass hold-up has been used to study biodegradation of several model NA compounds: namely trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA), a mixture of cis- and trans- 4-methyl-cyclohexane acetic acid (4MCHAA), and octanoic acid as well co-biodegradation of these naphthenic acids with octanoic acid, using a mixed culture developed in our laboratory. The biodegradation rates achieved for trans-4MCHCA in the CPBB are far greater than those reported previously in the literatures. The maximum biodegradation rate of trans-4MCHCA observed during batch operation was 43.5 mg/L-h, while a rate of 209 mg/L-h was achieved during continuous operation. Although cis-4MCHAA is more resistant to biodegradation when compared with trans-4MCHCA, the experimental results obtained from this study indicated both isomers were effectively biodegraded in the CPBB, with the maximum biodegradation rates being as high as 2.25 mg/L-h (cis-4MCHAA) and 4.17 mg/L-h (trans-4MCHAA) during batch operations and 4.17 mg/L-h(cis-4MCHAA) and 7.80 mg/L-h (trans-4MCHAA) during the continuous operation. Optimum temperature for biodegradation of 4MCHAA was determined as 25 aC. Furthermore, the biodegradation rate of single ring NAs (trans-4MCHCA and 4MCHAA) were found to be significantly improved through utilization of octanoic acid as a co-substrate. For example, the maximum biodegradation rate of trans-4MCHCA obtained during batch operation with the presence of octanoic acid was 112 mg/L-h, which was 2.6 times faster than the maximum value of 43.5 mg/L-h when trans-4MCHCA was used as a sole substrate. Similarly, the highest biodegradation rates of cis-4MCHAA and trans-4MCHAA were 16.7 and 28.4 mg/L-h in the presence of octanoic acid, which were 7.4 and 6.8 times higher than the maximum rates of 2.25 and 4.17 mg/L-h in the absence of octanoic acid.
|
16 |
Bioremediation of naphthenic acids in a circulating packed bed bioreactorHuang, Li Yang 18 August 2011 (has links)
Naphthenic acids (NAs) comprise a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids. NAs are present in wastewaters at petroleum refineries and in the process waters of oil sands extraction plants where they are primarily retained in large tailing ponds in the Athabasca region of Northern Alberta. The toxicity of these waters, primarily caused by NAs, dictates the need for their treatment.Bioremediation is considered as one of the most cost-effective approaches for the treatment of these wastewaters. Ex-situ bioremediation conducted in a bioreactor optimizes the microbial growth and activity by controlling environmental conditions resulting in efficient conversion of the contaminants to less harmful compounds. In this work, a circulating packed bed bioreactor (CPBB), with improved mixing, mass transfer and biomass hold-up has been used to study biodegradation of several model NA compounds: namely trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA), a mixture of cis- and trans- 4-methyl-cyclohexane acetic acid (4MCHAA), and octanoic acid as well co-biodegradation of these naphthenic acids with octanoic acid, using a mixed culture developed in our laboratory. The biodegradation rates achieved for trans-4MCHCA in the CPBB are far greater than those reported previously in the literatures. The maximum biodegradation rate of trans-4MCHCA observed during batch operation was 43.5 mg/L-h, while a rate of 209 mg/L-h was achieved during continuous operation. Although cis-4MCHAA is more resistant to biodegradation when compared with trans-4MCHCA, the experimental results obtained from this study indicated both isomers were effectively biodegraded in the CPBB, with the maximum biodegradation rates being as high as 2.25 mg/L-h (cis-4MCHAA) and 4.17 mg/L-h (trans-4MCHAA) during batch operations and 4.17 mg/L-h(cis-4MCHAA) and 7.80 mg/L-h (trans-4MCHAA) during the continuous operation. Optimum temperature for biodegradation of 4MCHAA was determined as 25 aC. Furthermore, the biodegradation rate of single ring NAs (trans-4MCHCA and 4MCHAA) were found to be significantly improved through utilization of octanoic acid as a co-substrate. For example, the maximum biodegradation rate of trans-4MCHCA obtained during batch operation with the presence of octanoic acid was 112 mg/L-h, which was 2.6 times faster than the maximum value of 43.5 mg/L-h when trans-4MCHCA was used as a sole substrate. Similarly, the highest biodegradation rates of cis-4MCHAA and trans-4MCHAA were 16.7 and 28.4 mg/L-h in the presence of octanoic acid, which were 7.4 and 6.8 times higher than the maximum rates of 2.25 and 4.17 mg/L-h in the absence of octanoic acid.
|
17 |
The Geochemical Evolution of Oil Sands Tailings Pond Seepage, Resulting from Diffusive Ingress Through Underlying Glacial Till SedimentsHolden, Alexander A Unknown Date
No description available.
|
Page generated in 0.0866 seconds