• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 16
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 1
  • Tagged with
  • 95
  • 95
  • 21
  • 15
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Genre criticism : an application of BP's image restoration campaign to the crisis communication genre

Eastlick, Anne C. 01 January 2011 (has links)
Within two months of its emergence, the BP Gulf Oil spill had become the worst environmental disaster in United States history. However, for those studying public relations the oil spill brought more than ecological disaster, by providing a case study of crisis communication. Although there were a number of crisis responses from BP throughout the course of the oil spill, the primary crisis response crafted by BP was an image restoration campaign which premiered in early June 2010. This campaign, though it exhibits qualities of a standard crisis response, was wildly unpopular with the United States Government and citizenry. This rhetorical analysis attempts to uncover the reasons behind the campaign's failure through an application of the genre model of criticism. By defining the crisis communication genre and applying it to the artifact, the current study uncovers the reasons behind the failure of the campaign. Through this discussion, this analysis identifies that BP did not address all necessary exigencies, nor did it consider the influence a rhetor can have on a message. An explanation for the failure of BP' s campaign provided a plethora of implications to the fields of public . relations and rhetorical criticism, while beginning a discussion to help define the crisis communication genre.
92

The fate and distribution of subsurface hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters of the Gulf of Mexico

Spier, Chelsea L. 01 January 2012 (has links)
The explosion of the Deepwater Horizon oil platform on April 20, 2010 resulted in the second largest oil spill in history. In this study, the distribution and chemical composition of hydrocarbons within a 45 km radius of the blowout was investigated. A complete set of hydrocarbon data were acquired from the National Oceanic and Atmospheric Administration (NOAA) and from BP, including data from 16 research missions collected over eight weeks. The distribution of hydrocarbons was found to be more dispersed over a wider area in subsurface waters than previously predicted or reported. Several hydrocarbon plumes were identified including a near-surface plume (0.5 to 50 m), two small mid-depth plume (240 to 290 m and 850 to 880 m), and a large deepwater plume approximately 1,050 to 1,300 m below surface. Water soluble compounds were preferentially extracted from the rising oil in deepwater, and were found at potentially toxic levels both in and outside of areas previously reported to contain the majority of hydrocarbons. Data collected from different research missions were measured for a wide variety of chemical compounds, but not every sample was analyzed for the same chemical compounds. To overcome the challenge of variability in sample data, a non-parametric method of evaluating the percentage of detectable results, was used for all data analysis in addition to evaluation of total sample concentrations. The two analysis techniques yielded similar results. This approach may be useful in other studies in which samples are measured for varying number of compounds and have varying detection limits. The distribution and toxicity of hydrocarbons in sediments between August and October, 2010 was also investigated and was found to be fairly localized.
93

Effects of Deepwater Horizon Crude Oil on Visual Function in Teleost Fishes

Magnuson, Jason T 08 1900 (has links)
The Deepwater Horizon oil spill released millions of barrels of oil into the Gulf of Mexico, impacting economically and ecologically important fishes. Polycyclic aromatic hydrocarbons (PAHs) present in the oil have been shown to cause developmental impairments in early life stage fishes, such as morphological and behavioral changes related to eye formation and visual processing following PAH exposure. Prior research reported reduced eye growth in open water, pelagic species, as well as reduced photoreceptor-specific transcription factors associated with eye development following exposure to crude oil. Though changes in transcriptomic-level pathways associated with vision and visual processing have been reported, it has yet to be determined how these changes relate to physiological or behavioral-level effects in fish. Therefore, the present studies evaluated the effect of weathered crude oil on eye development and visual function in mahi-mahi, red drum, sheepshead minnow, and zebrafish larvae. Fish were assessed through several visually-mediated behavioral assays, analyzed histologically and immunohistologically, along with subsequent transcriptomic analyses and associated gene expression changes. Larvae exposed to crude oil experienced significantly reduced abilities to exhibit optomotor or optokinetic responses relative to controls, with associated reductions in retinal development. Furthermore, genes associated with eye development and phototransduction were downregulated, with subsequent decreases in the immunofluorescence of neurological connections within the retina and a choroid-specific increase in apoptotic activity. We related oil-induced transcriptomic-level effects to morphological, physiological, and behavioral-level impairments in larval teleost fishes.
94

Analytical method development for the identification, detection, and quantification of emerging environmental contaminants in complex matrices

Place, Benjamin J. 15 August 2013 (has links)
The development of analytical methods for emerging contaminants creates many unique challenges for analytical chemists. By their nature, emerging contaminants have inherent data gaps related to their environmental occurrence, fate, and impact. This dissertation is a compilation of three studies related to method development for the structural identification of emerging contaminants, the detection and quantification of chemicals used in unprecedented quantities and applications, and the extraction of compounds from complex matrices where the solvent-solute-matrix interactions are not completely understood. The three studies present analytical methods developed for emerging contaminants in complex matrices, including: fluorochemical surfactants in aqueous film-forming foams, oil dispersant surfactants in seawater, and fullerene nanomaterials in carbonaceous solids. Aqueous film-forming foams, used in military and commercial firefighting, represent environmentally-relevant commercial mixtures that contain a variety of fluorochemical surfactants. Combining the surfactant-selective ionization of fast atom bombardment mass spectrometry with high resolution mass spectrometry, chemical formulas for 11 different fluorochemical classes were identified. Then AFFF-related patents were used to determine the structures. Of the eleven classes of fluorochemicals, ten have little, if any, data on their environmental occurrence, fate, and potential impacts in the peer-reviewed literature. In addition, nine of the identified classes had either cationic or zwitterionic functionalities and are likely to have different transport properties compared to the well-studied anionic fluorochemicals, such as perfluorooctanoate. After the Deepwater Horizon oil spill in the summer of 2010, one of the emergency response methods for the mitigation of the oil's environmental impact was the use of unprecedented amounts of oil dispersant to break down the oil slick and encourage biodegradation. This event illustrated the need for rapid analytical method development in order to respond to the potential environmental disaster in a timely manner. Using large volume injection liquid chromatography with tandem mass spectrometry, an analytical method was developed for the trace analysis of the multiple dispersant surfactant classes and the potential degradation products of the primary surfactant. Limits of detection ranged from 49 ��� 3,000 ng/L. The method provided excellent recovery (86 ��� 119%) and precision (10 ��� 23% RSD), while also accommodating for the high salinity of seawater samples and analyte contamination. Despite the fact that fullerene nanomaterials have been studied for almost three decades, research is still being conducted to fully understand the environmental properties of these materials. Previous studies to extract fullerenes from environmental matrices have resulted in low efficiency, high variability, or the extraction efficiencies have gone unreported. Extraction by ultrasonication with toluene and 1-methylnaphthalene increased the recovery 5-fold of a spiked, isotopically-labeled C������ surrogate from carbon lampblack as compared to that of the conventional approach of extracting with 100% toluene. The study revealed the importance of evaluating experimental variables such as extraction solvent composition and volume, and sample mass, as they have a significant impact on the quantitative extraction of fullerenes from environmental matrices. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from Aug. 15, 2012 - Aug. 15, 2013
95

Synthesis, characterisation and application of organoclays

Xi, Yunfei January 2006 (has links)
This thesis focuses on the synthesis and characterisation of organoclays. X-ray diffraction has been used to study the changes in the basal spacings of montmorillonite clay and surfactant-intercalated organoclays. Variation in the d-spacing was found to be a step function of the surfactant concentration. Three different molecular environments for surfactant octadecyltrimethylammonium bromide (ODTMA) within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. High-resolution thermogravimetric analysis (HRTG) shows that the thermal decomposition of montmorillonite modified with ODTMA takes place in four steps attributing to dehydration of adsorbed water, dehydration of water hydrating metal cations, loss of surfactant and the loss of OH units respectively. In addition, it has shown that the decomposition procedure of DODMA and TOMA modified clays are very different from that of ODTMA modified ones. The surfactant decomposition takes place in several steps in the DODMA and TOMA modified clays while for ODTMA modified clays, it shows only one step for the decomposition of surfactant. Also TG was proved to be a useful tool to estimate the amount of surfactant within the organoclays. A model is proposed in which, up to 0.4 CEC, a surfactant monolayer is formed between the montmorillonite clay layers; up to 0.8 CEC, a lateral-bilayer arrangement is formed; and above 1.5 CEC, a pseudotrimolecular layer is formed, with excess surfactant adsorbed on the clay surface. While for dimethyldioctadecylammonium bromide (DODMA) and trioctadecylmethylammonium bromide (TOMA) modified clays, since the larger sizes of the surfactants, some layers of montmorillonite are kept unaltered because of steric effects. The configurations of surfactant within these organoclays usually take paraffin type layers. Thermal analysis also provides an indication of the thermal stability of the organoclay as shown by different starting decomposition temperatures. FTIR was used as a guide to determine the phase state of the organoclay interlayers as determined from the CH asymmetric stretching vibration of the surfactants to provide more information on surfactant configurations. It was used to study the changes in the spectra of the surfactant ODTMA upon intercalation into a sodium montmorillonite. Surfaces of montmorillonites were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant ODTMA. Changes in the surfaces and structure were characterized using electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Both XRD patterns and TEM images demonstrate that SWy-2-Namontmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant will reduce the clay particle aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Fundamentally this thesis has increased the knowledge base of the structural and morphological properties of organo-montmorillonite clays. The configurations of surfactant in the organoclays have been further investigated and three different molecular environments for surfactant ODTMA within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Changes in the spectra of the surfactant upon intercalation into clay have been investigated in details. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic contaminants from aqueous media and for the removal of hydrocarbon spills on roads.

Page generated in 0.0528 seconds